CRII: SHF: Error Resilient Asynchronous Architecture for Ultra-Low Power Energy Harvesting IoT Applications

CRII:SHF:适用于超低功耗能量收集物联网应用的容错异步架构

基本信息

  • 批准号:
    2153373
  • 负责人:
  • 金额:
    $ 17.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-03-01 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).As the demand for self-powered smart electronics and battery-less solutions increases, energy harvesting will be the power source of the future. Energy-harvesting devices operate on energy derived from ambient environmental sources or human activities. However, due to the limited energy density and irregular energy profile of different energy sources, such self-powered devices should be extremely energy-efficient and functional even under fluctuating supply voltages. Nowadays, most devices based on conventional synchronous (clocked) digital designs are extremely power-hungry, with the clock accounting for a significantly large portion of the consumed energy. Moreover, device miniaturization results in major design challenges, which makes clocked designs more susceptible to supply-voltage variations and unsuitable for devices operating on harvested energy. Asynchronous (clockless) designs can resolve the power inefficiencies associated with clocked designs, and have the potential to bring a whole class of applications into the domain serviceable by energy harvesting. With this vision, the primary objective of this project is to design error-resilient asynchronous circuits, which can create a venue to implement robust, unsupervised, maintenance-free, safe, sustainable, and low-power electronics for numerous energy harvesting-powered applications in different sectors, such as medical, space, defense, automobile, power industry, etc.The goal of this project is to develop a robust, reliable, and error-tolerant Quasi Delay Insensitive (QDI) asynchronous architecture for ultra-low power applications, which can perform energy-efficient computation and provide protection against radiation-induced transient errors in unsupervised scenarios. While numerous error-detection and -mitigation techniques exist for synchronous designs, there are very few for QDI asynchronous circuits. Also, the existing methods have major limitations, such as failure to ensure complete resilience, failure to halt error propagation in QDI pipelines, failure to circumvent duplication resulting in latency, energy, and area overhead, etc. This project aims to address these limitations by conducting research in two phases. The first phase will focus on 1) systematically analyzing the error response of QDI asynchronous circuits, and 2) developing a scalable and efficient formal framework to identify vulnerable components in both the data path and control path. The second phase will leverage the framework developed in the first phase to 1) critically analyze the vulnerable components and critical paths, 2) investigate possible architectural modifications for complete error-resilience, 3) ensure proper actions to prevent fault propagation through the QDI pipeline, and 4) perform cost/performance trade-off analysis of the newly developed architecture.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项的全部或部分资金根据《2021 年美国救援计划法案》(公法 117-2)提供。随着对自供电智能电子产品和无电池解决方案的需求增加,能量收集将成为未来。能量收集设备利用来自周围环境来源或人类活动的能量进行操作。然而,由于不同能源的能量密度有限且能量分布不规则,这种自供电设备即使在电源电压波动的情况下也应该具有极高的能效和功能。如今,大多数基于传统同步(时钟)数字设计的设备都非常耗电,其中时钟占据了消耗能源的很大一部分。此外,设备小型化带来了重大的设计挑战,这使得时钟设计更容易受到电源电压变化的影响,并且不适合依靠收集的能量运行的设备。异步(无时钟)设计可以解决与时钟设计相关的电源效率低下问题,并有可能将整类应用带入可通过能量收集进行服务的领域。秉持这一愿景,该项目的主要目标是设计抗错误异步电路,为众多能量收集供电应用提供稳健、无监督、免维护、安全、可持续和低功耗电子产品的场所该项目的目标是为超低功耗应用开发强大、可靠且容错的准延迟不敏感(QDI)异步架构,可以执行节能计算,并在无人监督的情况下提供针对辐射引起的瞬态错误的保护。虽然同步设计存在多种错误检测和缓解技术,但 QDI 异步电路的错误检测和缓解技术却很少。此外,现有方法存在重大局限性,例如无法确保完全弹性、无法阻止 QDI 管道中的错误传播、无法避免导致延迟、能源和面积开销的重复等。该项目旨在通过以下方式解决这些限制:分两个阶段进行研究。第一阶段将重点关注 1) 系统分析 QDI 异步电路的错误响应,2) 开发可扩展且高效的形式框架,以识别数据路径和控制路径中的易受攻击的组件。第二阶段将利用第一阶段开发的框架来 1) 批判性地分析易受攻击的组件和关键路径,2) 研究可能的架构修改以实现完全的容错能力,3) 确保采取适当的措施来防止故障通过 QDI 管道传播, 4) 对新开发的架构进行成本/性能权衡分析。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Scalable Formal Framework for the Verification and Vulnerability Analysis of Redundancy-Based Error-Resilient Null Convention Logic Asynchronous Circuits
用于基于冗余的容错空约定逻辑异步电路验证和漏洞分析的可扩展形式框架
Combining Relaxation With NCL_X for Enhanced Optimization of Asynchronous Null Convention Logic Circuits
将弛豫与 NCL_X 相结合以增强异步空约定逻辑电路的优化
  • DOI:
    10.1109/access.2023.3318132
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Khodosevych, Danylo;Bodoh, Alexander C.;Sakib, Ashiq A.;Smith, Scott C.
  • 通讯作者:
    Smith, Scott C.
Error Resilient Sleep Convention Logic Asynchronous Circuit Design
容错睡眠约定逻辑异步电路设计
  • DOI:
    10.1109/newcas57931.2023.10198041
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Datta, Mithun;Bodoh, Alexander;Sakib, Ashiq A.
  • 通讯作者:
    Sakib, Ashiq A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ashiq Sakib其他文献

Ashiq Sakib的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

超高频同步整流DC-DC变换器效率优化关键技术研究
  • 批准号:
    62301375
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
衔接蛋白SHF负向调控胶质母细胞瘤中EGFR/EGFRvIII再循环和稳定性的功能及机制研究
  • 批准号:
    82302939
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向5G通信的超高频FBAR耗散机理和耗散稳定性研究
  • 批准号:
    12302200
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
宽运行范围超高频逆变系统架构拓扑与调控策略研究
  • 批准号:
    52377175
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
加速器用大功率密度超高频铁基纳米晶合金设计及性能调控机理
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

CISE-ANR: SHF: Small: CHAMELEON: CompreHending And Mitigating Error in AnaLog ImplEmentations of On-Die Neural Networks
CISE-ANR:SHF:小:CHAMELEON:理解并减轻片上神经网络模拟实现中的错误
  • 批准号:
    2214934
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CCF:SHF: Small: Some New Class of Error Control Codes for VLSI and Computer Systems
CCF:SHF:小型:用于 VLSI 和计算机系统的一些新型错误控制代码
  • 批准号:
    2006571
  • 财政年份:
    2020
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
SHF: Small: Using Error-Bounded Lossy Compression to Improve High-Performance Computing Systems and Applications
SHF:小型:使用误差有限有损压缩来改进高性能计算系统和应用程序
  • 批准号:
    1910197
  • 财政年份:
    2019
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CRII: SHF: Automatic Extraction of Error-Handling Specifications in Systems Software
CRII:SHF:系统软件中错误处理规范的自动提取
  • 批准号:
    1464439
  • 财政年份:
    2015
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
SHF: Small: Compiler and Architectural Techniques for Soft Error Resilience
SHF:小型:软错误恢复能力的编译器和架构技术
  • 批准号:
    1527463
  • 财政年份:
    2015
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了