LEAP-HI: A Data-Driven Fragility Framework for Risk Assessment of Levee Breach

LEAP-HI:用于堤坝溃决风险评估的数据驱动的脆弱性框架

基本信息

  • 批准号:
    2152896
  • 负责人:
  • 金额:
    $ 200万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2028-01-31
  • 项目状态:
    未结题

项目摘要

Levees are critical infrastructural elements for flood protection that are built with earth materials. They run parallel to rivers and coastlines and are designed to keep water out of the low-lying communities and agricultural lands behind the levee. America’s over 100,000 miles of levees were built with varying levels of quality using a wide variety of materials that are often dictated by availability rather than engineering specifications and these aging levees are being exposed to increasing stress due to climate change. Moreover, the construction of levees presents the so-called levee paradox, in which the presence of the levee system lowers public perception of risk in protected areas, thereby reducing incentives to take auxiliary precautions and leading to reduced preparedness. This Leading Engineering for America's Prosperity, Health, and Infrastructure (LEAP-HI) research will enable riverside communities to better analyze their options and resources for flood defense and plan for a projected increase in the frequency of extreme weather events. The project will expand our understanding of how infrastructure responds and fails during natural hazards. It will include collaborations between universities (including a Historically Black University), government agencies, and society. Finally, the project will contribute to U.S. workforce development through training a diverse group of students on the development and deployment of cutting-edge technology for the assessment of flood and environmental hazards.This project will address uncertainties in levee performance and levee breach flooding through a convergent approach that integrates smart sensing of geotechnical and hydraulic parameters with probabilistic and deterministic modeling of levee failure and inundation of levee-protected floodplains. The project will investigate an integrated levee monitoring and flood risk assessment system consisting of unmanned aerial vehicle-assisted deployment of novel sensors, automated data collection, and coupled data-driven, probabilistic, and physics-based models. These high fidelity spatial and temporal measurement and modeling capabilities will be leveraged by domain expertise in the fields of hydrology and hydraulics, structural reliability, and geotechnical engineering to create fragility metrics for levee reliability that will be integrated into a system of models for the flood disaster chain. The system will allow decision-makers and stakeholders to monitor and repair vulnerable levees, develop countermeasures, and support a risk-based decision-making process aimed at developing effective risk communication and flood management policy. This project will expand the understanding of floodplain hydrology as well as the dynamic interactions of soil parameters and hydraulic loading. Given the potential for the project’s data, sensor designs, and modeling tools to benefit the public good, the project’s artifacts will be open-sourced and made freely available to enable other researchers and practitioners to leverage the project’s advancements.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
堤坝是防洪的重要基础设施,它们与河流和海岸线平行,旨在防止水进入堤坝后面的低洼社区和农田。美国修建了超过 100,000 英里的堤坝。使用各种材料的质量水平各不相同,这些材料通常取决于可用性而不是工程规格,而且这些老化的堤坝由于气候变化而面临着越来越大的压力。堤坝呈现出所谓的堤坝悖论,其中堤坝系统的存在降低了公众对保护区风险的认知,从而减少了采取辅助预防措施的动力,并导致准备工作减少。 (LEAP-HI) 研究将使河滨社区能够更好地分析他们的防洪方案和资源,并针对预计的极端天气事件发生频率的增加制定计划,该项目将扩大我们对基础设施在洪水期间如何响应和失效的了解。最后,该项目将包括大学(包括历史悠久的黑人大学)、政府机构和社会之间的合作,通过培训不同的学生群体开发和部署尖端技术,为美国劳动力发展做出贡献。用于评估洪水和环境危害。该项目将通过一种收敛方法解决堤坝性能和堤坝决口洪水的不确定性问题,该方法是对岩土和水力参数进行智能传感,并对堤坝破坏和破坏进行概率性和确定性建模。该项目将研究综合堤坝监测和洪水风险评估系统,包括无人机辅助部署的新型传感器、自动数据收集以及耦合数据驱动、概率和基于物理的模型。这些高保真度空间和时间测量和建模功能将通过水文和水力学、结构可靠性和岩土工程领域的专业知识来利用,为堤坝可靠性创建脆弱性指标,并将其集成到该系统将允许决策者和利益相关者监测和修复脆弱的堤坝,制定对策,并支持基于风险的决策过程,旨在制定有效的风险沟通和洪水管理政策。该项目将扩大对洪泛区水文学以及土壤参数和水力载荷的动态相互作用的理解,鉴于该项目的数据、传感器设计和建模工具有可能造福公众利益,该项目的工件将是开源的。免费提供给其他人研究人员和从业者利用该项目的进步。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jasim Imran其他文献

Bayes_Opt-SWMM: A Gaussian process-based Bayesian optimization tool for real-time flood modeling with SWMM
Bayes_Opt-SWMM:基于高斯过程的贝叶斯优化工具,用于使用 SWMM 进行实时洪水建模
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. H. Tanim;Corinne Smith;Austin R.J. Downey;Jasim Imran;E. Goharian
  • 通讯作者:
    E. Goharian

Jasim Imran的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jasim Imran', 18)}}的其他基金

NSF Convergence Accelerator Track K: COMPASS: Comprehensive Prediction, Assessment, and Equitable Solutions for Storm-Induced Contamination of Freshwater Systems
NSF 融合加速器轨道 K:COMPASS:风暴引起的淡水系统污染的综合预测、评估和公平解决方案
  • 批准号:
    2344357
  • 财政年份:
    2024
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
Modeling of Flow and Morphodynamics of Sinuous Submarine Channels
蜿蜒海底航道的流动和形态动力学建模
  • 批准号:
    1061244
  • 财政年份:
    2011
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
Career: Experimental and Numerical Modeling of Flow and Morphology Associated with Meandering Submarine Channels
职业:与蜿蜒海底通道相关的流动和形态的实验和数值模拟
  • 批准号:
    0134167
  • 财政年份:
    2002
  • 资助金额:
    $ 200万
  • 项目类别:
    Continuing Grant

相似国自然基金

Hi-C大维矩阵数据的两样本检验及聚类模型研究
  • 批准号:
    12271536
  • 批准年份:
    2022
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目
三维基因组结构模式挖掘方法研究
  • 批准号:
    61873198
  • 批准年份:
    2018
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目
1Kb分辨率Hi-C数据分析框架搭建及其在人干细胞肝向分化研究中的应用
  • 批准号:
    31871343
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
通过Hi-C数据多尺度统计建模揭示染色体三维结构多层次组织模式
  • 批准号:
    31771430
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于日本密集井下地震台网(Hi-net)数据流的中国及邻区大震震源过程研究
  • 批准号:
    41474050
  • 批准年份:
    2014
  • 资助金额:
    85.0 万元
  • 项目类别:
    面上项目

相似海外基金

New approaches for leveraging single-cell data to identify disease-critical genes and gene sets
利用单细胞数据识别疾病关键基因和基因集的新方法
  • 批准号:
    10768004
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
A novel role of cholesterol and SR-BI in adipocyte biology
胆固醇和 SR-BI 在脂肪细胞生物学中的新作用
  • 批准号:
    10733720
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
Chromosomal aberration detection in FFPE tissue using proximity ligation sequencing
使用邻近连接测序检测 FFPE 组织中的染色体畸变
  • 批准号:
    10759887
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
Development of multi-color 3D super-localization LiveFISH and LiveFISH PAINT to investigate the chromatin dynamics at any genomic scale
开发多色 3D 超定位 LiveFISH 和 LiveFISH PAINT,以研究任何基因组规模的染色质动态
  • 批准号:
    10725002
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
Bridging the gap: joint modeling of single-cell 1D and 3D genomics
弥合差距:单细胞 1D 和 3D 基因组学联合建模
  • 批准号:
    10572539
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了