SCC-IRG JST: Hyperlocal Risk Monitoring and Pandemic Preparedness through Privacy-Enhanced Mobility and Social Interactions Analysis

SCC-IRG JST:通过隐私增强的移动性和社交互动分析进行超本地风险监控和流行病防范

基本信息

  • 批准号:
    2125530
  • 负责人:
  • 金额:
    $ 75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

Hyperlocal risk monitoring is critical for gaining a better estimate of the current and future infection risk at a population level during a pandemic, as well as a better understanding of disparate infection risk in vulnerable groups. However, many challenges remain in enabling hyperlocal risk monitoring and decision making for community-based pandemic preparedness. First, most popular disease prediction models are at a coarse-grained level without considering mobility and social interactions data. Second, a one-size-fits-all approach fails to appropriately address heterogeneity in mobility patterns and interactions, which can be highly community or country specific (e.g., US vs. Japan) and the risks are affected by regional, socioeconomic, behavioral, and cultural differences. Finally, privacy concerns limit the access and use of fine-grained mobility and social interactions data. This project represents a multi-disciplinary collaboration between US and Japanese researchers including lead institutions at Emory University and Kyoto University. The project includes strong community engagement with communities in the US (primarily Georgia and Southern California) and Japan (primarily Kyoto prefecture) as well as local and regional health centers.. The project aims to develop a framework for privacy-enhanced monitoring and analysis of fine-grained mobility and social interactions data to enable hyperlocal risk monitoring and data-driven decision-making. Such hyperlocal situational awareness can help governments and response officials at all levels (from schools and businesses to county and state) for policy making, e.g., open in-person or online; close or partially shut down; and reallocate medical supplies and workforces to vulnerable areas. It can also benefit an individual’s personal decision making in the community, e.g., to avoid high-risk areas. The project includes an integrative research agenda that addresses both technical and social science questions to enable hyperlocal data collection, analysis, and decision making: 1) develop computational and modeling methods for fine-grained risk estimation and scenario analysis (e.g., future estimated risk under partial shutdown) by incorporating real-world mobility and social interactions data; 2) study how mobility patterns, social interactions, behaviors, and risks change and differ by region, socioeconomic status, and country using the US vs. Japan as exemplars; and 3) develop privacy-enhancing technologies and study their social adoption and legal implications for collection and aggregation of mobility and social network data. The team will engage with community stakeholders across the entire data-driven decision-making pipeline including data providers; local public health agencies; local decision makers; and community members. The goal is to not only build a data aggregation and analytics platform but also a feedback loop that enables data-driven policy and decision making while simultaneously enabling social scientists, epidemiologists, and decision makers to steer the data collection, aggregation, and analysis, ultimately enabling better preparation and readiness for future outbreaks. This project is a joint collaboration between the National Science Foundation and the Japan Science and Technology AgencyThis award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
超本地风险监测对于更好地估计大流行期间人群当前和未来的感染风险以及更好地了解弱势群体的不同感染风险至关重要。然而,在实现超本地风险监测和评估方面仍然存在许多挑战。首先,最流行的疾病预测模型处于粗粒度水平,没有考虑流动性和社会互动数据;其次,一刀切的方法无法适当解决流动模式的异质性。和互动,这可以是高度特定于社区或国家(例如美国与日本)的风险受到区域、社会经济、行为和文化差异的影响。最后,隐私问题限制了本项目所代表的细粒度移动和社交互动数据的访问和使用。美国和日本研究人员之间的多学科合作,包括埃默里大学和京都大学的牵头机构,该项目包括与美国(主要是佐治亚州和南加州)和日本(主要是京都县)以及当地和日本社区的强有力的社区参与。区域卫生该项目旨在开发一个框架,用于对细粒度移动和社交互动数据进行隐私增强监控和分析,以实现超本地风险监控和数据驱动的决策,这种超本地态势感知可以帮助政府和响应官员。各级(从学校和企业到县和州)制定政策,例如亲自开放或在线开放;以及将医疗用品和劳动力重新分配给脆弱地区;这也有利于个人的个人决策。在例如,为了避免高风险区域,该项目包括一个综合研究议程,解决技术和社会科学问题,以实现超本地数据收集、分析和决策:1)开发细粒度风险的计算和建模方法。通过结合现实世界的流动性和社会互动数据进行估计和情景分析(例如,部分关闭情况下的未来估计风险);2)研究流动性模式、社会互动、行为和风险如何随地区、社会经济地位和国家而变化和差异;使用美国以日本为例;3)开发隐私增强技术,并研究其社会采用及其对移动和社交网络数据收集和聚合的法律影响。包括数据提供者;当地公共卫生机构和社区成员;目标不仅是建立一个数据聚合和分析平台,而且是一个反馈循环,以支持数据驱动的政策和决策;流行病学家,以及决策者指导数据收集、汇总和分析,最终为未来的疫情爆发做好更好的准备和准备。该项目是美国国家科学基金会和日本科学技术振兴机构之间的联合合作,该奖项反映了国家科学基金会的法定使命,并被视为值得通过使用基金会的智力优点和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(27)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Personalized Differentially Private Federated Learning without Exposing Privacy Budgets
个性化差异化私有联邦学习而不暴露隐私预算
NeuroSketch: Fast and Approximate Evaluation of Range Aggregate Queries with Neural Networks
NeuroSketch:使用神经网络快速近似评估范围聚合查询
Toward Accurate Spatiotemporal COVID-19 Risk Scores Using High-Resolution Real-World Mobility Data
使用高分辨率真实世界移动数据获得准确的时空 COVID-19 风险评分
A Neural Approach to Spatio-Temporal Data Release with User-Level Differential Privacy
具有用户级差分隐私的时空数据发布的神经方法
Social Robot Design Challenge: Gathering design requirements from teens
社交机器人设计挑战:收集青少年的设计要求
  • DOI:
    10.1145/1122445.1122456
  • 发表时间:
    2019-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rose, Emma;Björling, Elin A.;Cakmak, Maya
  • 通讯作者:
    Cakmak, Maya
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Li Xiong其他文献

Virus evolutionary genetic algorithm for task collaboration of logistics distribution
物流配送任务协同的病毒进化遗传算法
  • DOI:
    10.1117/12.664555
  • 发表时间:
    2005-12-22
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Fanghua Ning;Zichen Chen;Li Xiong
  • 通讯作者:
    Li Xiong
Coordinated optimization control strategy of hydropower and thermal power AGC units
水电、火电AGC机组协调优化控制策略
  • DOI:
    10.1016/j.egyr.2023.04.202
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Zhencheng Liang;Guangzhen Lu;Ling Li;Bin Li;Yixin Zhuo;Yude Yang;Guangming Li;Cuiyun Luo;Yangtian Ning;Li Xiong
  • 通讯作者:
    Li Xiong
Synthesis and evaluation of amide side-chain modified Agomelatine analogues as potential antidepressant-like agents.
酰胺侧链修饰的阿戈美拉汀类似物作为潜在抗抑郁药的合成和评价。
  • DOI:
    10.1016/j.bmcl.2014.02.065
  • 发表时间:
    2014-04-01
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Ying Chang;Weiyi Pi;W. Ang;Yuanyuan Liu;Chunlong Li;Jiajia Zheng;Li Xiong;Tao Yang;Youfu Luo
  • 通讯作者:
    Youfu Luo
A New Learning Algorithm for Imbalanced Data—PCBoost
一种针对不平衡数据的新学习算法——PCBoost
Nectin-2 and DDX3 are biomarkers for metastasis and poor prognosis of squamous cell/adenosquamous carcinomas and adenocarcinoma of gallbladder.
Nectin-2和DDX3是鳞状细胞/腺鳞癌和胆囊腺癌转移和不良预后的生物标志物。

Li Xiong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Li Xiong', 18)}}的其他基金

NSF Student Travel Support for 2022 ACM International Conference on Information and Management (CIKM)
NSF 学生参加 2022 年 ACM 国际信息与管理会议 (CIKM) 的旅行支持
  • 批准号:
    2232829
  • 财政年份:
    2022
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: PREMED: Privacy-Preserving and Robust Computational Phenotyping using Multisite EHR Data
合作研究:SaTC:核心:中:PREMED:使用多站点 EHR 数据的隐私保护和鲁棒计算表型分析
  • 批准号:
    2124104
  • 财政年份:
    2021
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
SCC-PG: JST: Privacy-enhanced data-driven health monitoring for smart and connected senior communities
SCC-PG:JST:针对智能互联老年社区的隐私增强型数据驱动健康监测
  • 批准号:
    1952192
  • 财政年份:
    2020
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
RAPID: Collaborative: REACT: Real-time Contact Tracing and Risk Monitoring via Privacy-enhanced Mobile Tracking
RAPID:协作:REACT:通过隐私增强型移动跟踪进行实时接触者追踪和风险监控
  • 批准号:
    2027783
  • 财政年份:
    2020
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
I-Corps: iCloak: Privacy Preserving Individual Location Sharing
I-Corps:iCloak:隐私保护个人位置共享
  • 批准号:
    1619679
  • 财政年份:
    2016
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
TWC: Small: Rigorous and Customizable Spatiotemporal Privacy for Location Based Applications
TWC:小型:基于位置的应用程序的严格且可定制的时空隐私
  • 批准号:
    1618932
  • 财政年份:
    2016
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
TC: Small: Adaptive Differentially Private Data Release
TC:小型:自适应差分隐私数据发布
  • 批准号:
    1117763
  • 财政年份:
    2011
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant

相似国自然基金

免疫反应基因1(IRG1)在急性肺损伤中的作用及其转录调控机制研究
  • 批准号:
    82300103
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
免疫应答基因IRG1介导衣康酸调控铁死亡与糖尿病肾脏病作用及机制研究
  • 批准号:
    82300911
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
IRG1/ITA调控SDH介导的线粒体代谢重编程在磨损颗粒激活巨噬细胞引起人工关节无菌性松动中的作用机制
  • 批准号:
    82372415
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
IRG1/衣康酸调控JAK2/STAT4轴抑制Th1细胞分化缓解慢性非细菌性前列腺炎的机制研究
  • 批准号:
    82300873
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肺炎支原体活化中性粒细胞IRG1/衣康酸代谢轴促进肺部炎症反应的机制研究
  • 批准号:
    82371790
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Role of Irg-1/itaconate in modulating secondary brain damage after traumatic brain injury in mice
Irg-1/衣康酸在调节小鼠脑外伤后继发性脑损伤中的作用
  • 批准号:
    10594260
  • 财政年份:
    2023
  • 资助金额:
    $ 75万
  • 项目类别:
SCC-IRG Track 2: A data-driven approach to designing a community-focused indoor heat emergency alert system for vulnerable residents (CommHEAT)
SCC-IRG 第 2 轨:采用数据驱动方法为弱势居民设计以社区为中心的室内高温紧急警报系统 (CommHEAT)
  • 批准号:
    2226880
  • 财政年份:
    2023
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
SCC-IRG Track 1: Strengthening Resilience of Ojibwe Nations Across Generations (STRONG)
SCC-IRG 第 1 轨道:加强奥及布威民族代代相传的复原力(强)
  • 批准号:
    2233912
  • 财政年份:
    2023
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
SCC-IRG Track 2: Equitable-Access Flood Modeling for Timely and Just Adaptation in the Near and Long Term
SCC-IRG 第 2 轨道:公平访问洪水建模,以实现近期和长期的及时、公正的适应
  • 批准号:
    2305476
  • 财政年份:
    2023
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
SCC-IRG Track 1: Community-Driven Design of Fair, Urban Air Mobility Transportation Management Systems
SCC-IRG 第 1 轨:社区驱动的公平城市空中交通运输管理系统设计
  • 批准号:
    2313104
  • 财政年份:
    2023
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了