SCC-PG : Human-AI Teaming for Flood Evacuation Decision Making

SCC-PG:人机协作进行洪水疏散决策

基本信息

  • 批准号:
    2125283
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

Evacuation of coastal communities, particularly in rural areas, can be a challenge due to the topography, dispersed residential and population patterns, and limited number of roadways that lead further inland. This Smart and Connected Community Planning project will assess the viability of leveraging human knowledge and social media data with an artificial intelligence (AI) system to create a human-AI teaming (HAT) paradigm addressing flood evacuation decision making in isolated coastal rural communities. In the process of creating a HAT paradigm, we will integrate transportation network data with river information as well as volunteers’ observations and social media data to leverage the strengths of local members of a Community Emergency Response Team (CERT) with AI. This Planning project advances the field by conducting a feasibility study of this HAT decision-making tool, which will be tested through real-world flood evacuation examples in Charleston, Berkeley, and Dorchester Counties located in the Lowcountry region of South Carolina (SC). Additionally, we will determine the barriers and motivations for understanding the usability of the researched HAT decision-making tool using qualitative (interview) protocols. This project supports education and diversity by providing research experiences to diverse students, as well as focusing on vulnerable, rural communities. Additionally, this planning project supports NSF's mission to promote the progress of science and to advance the nation's health, prosperity, and welfare by seeking to (i) enhance flood evacuation by automatic data-driven decision making and (ii) identify potential barriers to the adoption of technology in rural volunteer communities. This research will co-create and implement a pilot solution for flood evacuation decision making by including systems thinking, human–machine engagement, human development training, and AI-driven decision making. The focus is on the advancement of flood evacuation techniques by transferring the traditional determination techniques (the expert evaluation approach) toward new and coherent HAT computing. By leveraging HAT protocols and applying them to a flood evacuation decision-making tool, our project has the potential to be transformative. Tackling these issues will enable us to harness the full potential of AI as a partner in emergency management and response. This planning project brings together researchers from water resources engineering, social sciences and communication, transportation engineering, disaster science, computer science, and numerous volunteers and stakeholders to co-create solutions, build/strengthen collaboration with key stakeholders and CERT organizations and identify potential barriers to technology use in rural communities challenged by a higher incidence of flood hazards and substandard infrastructure.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
由于地形、分散的居住和人口模式以及通往内陆的道路数量有限,沿海社区(尤其是农村地区)的疏散可能是一项挑战。该智能互联社区规划项目将评估利用人类知识的可行性。和社交媒体数据与人工智能(AI)系统一起创建一个人机协作(HAT)范式,解决偏远沿海农村社区的洪水疏散决策问题。在创建 HAT 范式的过程中,我们将把交通网络数据与人工智能(AI)系统相结合。还有河流信息作为志愿者的观察和社交媒体数据,利用人工智能社区应急响应小组 (CERT) 当地成员的优势 该规划项目通过对 HAT 决策工具进行可行性研究来推进该领域的发展,并将对其进行测试。通过位于南卡罗来纳州 (SC) 低地地区的查尔斯顿县、伯克利县和多切斯特县的真实洪水疏散示例,我们将使用定性方法来确定了解所研究的 HAT 决策工具的可用性的障碍和动机。 (采访)协议。该项目通过为不同的学生提供研究经验并关注弱势农村社区来支持教育和多样性,此外,该规划项目支持 NSF 促进科学进步并通过以下方式促进国家的健康、繁荣和福利的使命。寻求(i)通过自动数据驱动的决策来加强洪水疏散,以及(ii)确定农村志愿者社区采用技术的潜在障碍。这项研究将共同​​创建和实施洪水疏散决策的试点解决方案,包括:系统思维、人机交互、重点是通过将传统的确定技术(专家评估方法)转变为新的一致的 HAT 计算,利用 HAT 协议并将其应用于洪水,从而推动洪水疏散技术的发展。作为疏散决策工具,我们的项目有潜力解决这些问题,使我们能够充分发挥人工智能作为应急管理和响应合作伙伴的潜力。该规划项目汇集了来自水资源工程、社会科学的研究人员。通信、交通工程、灾害科学、计算机科学以及众多志愿者和利益相关者共同创建解决方案,建立/加强与主要利益相关者和 CERT 组织的合作,并确定因洪水灾害发生率较高和基础设施不合格而面临挑战的农村社区技术使用的潜在障碍。该奖项通过使用基金会的智力价值和更广泛的影响审查标准进行评估,NSF 的法定使命被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An End‐To‐End Flood Stage Prediction System Using Deep Neural Networks
使用深度神经网络的 End-To-End 洪水阶段预测系统
  • DOI:
    10.1029/2022ea002385
  • 发表时间:
    2023-01-01
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    L. Windheuser;R. Karanjit;R. Pally;S. Samadi;N. Hubig
  • 通讯作者:
    N. Hubig
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vidya Samadi其他文献

Challenges and opportunities when bringing machines onto the team: Human-AI teaming and flood evacuation decisions
将机器引入团队时的挑战和机遇:人机协作和洪水疏散决策
  • DOI:
    10.1016/j.envsoft.2024.105976
  • 发表时间:
    2024-02-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vidya Samadi;Keri K. Stephens;A. Hughes;Pamela Murray
  • 通讯作者:
    Pamela Murray
DX-FloodLine: End-To-End Deep Explainable Pipeline for Real Time Flood Scene Object Detection From Multimedia Images
DX-FloodLine:用于从多媒体图像中实时检测洪水场景对象的端到端深度可解释管道
  • DOI:
    10.1109/access.2023.3321312
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Nushrat Humaira;Vidya Samadi;N. Hubig
  • 通讯作者:
    N. Hubig
Fill-and-Spill: Deep Reinforcement Learning Policy Gradient Methods for Reservoir Operation Decision and Control
满溢:水库运行决策与控制的深度强化学习策略梯度方法
  • DOI:
    10.48550/arxiv.2403.04195
  • 发表时间:
    2024-03-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sadegh Sadeghi Tabas;Vidya Samadi
  • 通讯作者:
    Vidya Samadi
Converging Human Intelligence with AI Systems to Advance Flood Evacuation Decision Making
将人类智能与人工智能系统相融合,推进洪水疏散决策

Vidya Samadi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vidya Samadi', 18)}}的其他基金

Collaborative Research: CyberTraining: Implementation: Small: Inclusive Cyberinfrastructure and Machine Learning Training to Advance Water Science Research
合作研究:网络培训:实施:小型:包容性网络基础设施和机器学习培训,以推进水科学研究
  • 批准号:
    2320979
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
RAPID: Reconstruction of Hurricane Florence Flood Hydrographs (HF2Hs) for South Carolina's Critical Infrastructures Using Data Analytics Algorithms and In-situ Field Measurements
RAPID:使用数据分析算法和现场现场测量重建南卡罗来纳州关键基础设施的飓风弗洛伦斯洪水过程线 (HF2Hs)
  • 批准号:
    2035685
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
RAPID: Reconstruction of Hurricane Florence Flood Hydrographs (HF2Hs) for South Carolina's Critical Infrastructures Using Data Analytics Algorithms and In-situ Field Measurements
RAPID:使用数据分析算法和现场现场测量重建南卡罗来纳州关键基础设施的飓风弗洛伦斯洪水过程线 (HF2Hs)
  • 批准号:
    1901646
  • 财政年份:
    2018
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似国自然基金

多尺度非均匀网格反演策略下的壳幔Pn/Pg波速度与各向异性成像方法及在西北太平洋俯冲带地区的应用
  • 批准号:
    42274074
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
西秦岭北缘山前带白垩纪/古近纪(K/Pg)构造事件研究
  • 批准号:
    42172238
  • 批准年份:
    2021
  • 资助金额:
    61 万元
  • 项目类别:
    面上项目
构建多模式生物复合纳米释药体系Bac@HMRu-PG实现肿瘤充分给药及其协同抗肿瘤作用
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
虎杖通过肺表面活性脂质PG调控肺泡巨噬细胞抗RSV感染的机制研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
Pg-LPS刺激血小板释放微粒对单核细胞作用及促动脉粥样硬化的机制研究
  • 批准号:
    82071116
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目

相似海外基金

SCC-PG: Human-AI Partnership for Knowledge Management and Transfer in Community Social Services
SCC-PG:社区社会服务知识管理和转移的人机合作
  • 批准号:
    2331007
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
SCC-CIVIC-PG Track A: Human-centric, Data-driven Coastal Flood Resilience Strategies for Economically Disadvantaged Communities on Long Island
SCC-CIVIC-PG 轨道 A:针对长岛经济弱势社区的以人为本、数据驱动的沿海防洪策略
  • 批准号:
    2228490
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
SCC-CIVIC-PG Track A: Human-centric, Data-driven Coastal Flood Resilience Strategies for Economically Disadvantaged Communities on Long Island
SCC-CIVIC-PG 轨道 A:针对长岛经济弱势社区的以人为本、数据驱动的沿海防洪策略
  • 批准号:
    2228490
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
SCC-CIVIC-PG Track B: Assessing the Feasibility of Systematizing Human-AI Teaming to Improve Community Resilience
SCC-CIVIC-PG 轨道 B:评估系统化人类与人工智能协作以提高社区复原力的可行性
  • 批准号:
    2043522
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
SCC-CIVIC-PG Track A: Human-centered, integrated mobility for disadvantaged communities in the San Diego region
SCC-CIVIC-PG 轨道 A:圣地亚哥地区弱势社区以人为本的综合出行
  • 批准号:
    2041140
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了