RAPID: Reconstruction of Hurricane Florence Flood Hydrographs (HF2Hs) for South Carolina's Critical Infrastructures Using Data Analytics Algorithms and In-situ Field Measurements

RAPID:使用数据分析算法和现场现场测量重建南卡罗来纳州关键基础设施的飓风弗洛伦斯洪水过程线 (HF2Hs)

基本信息

  • 批准号:
    2035685
  • 负责人:
  • 金额:
    $ 3.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-05-16 至 2021-09-30
  • 项目状态:
    已结题

项目摘要

In the wake of Hurricane Florence in South Carolina, this research aims to collect high water marks (HWMs) data across flooded/damaged critical infrastructures, and perishable images and video footage from traffic cameras and social media outlets. The investigators will then reconstruct Hurricane Florence flood hydrographs (HF2Hs) using data analytics algorithms as well as HWMs data to estimate flood elevation and inundation extent over overtopped roads and bridges. Using the eastern portion of South Carolina (SC) as a case study, this RAPID project will address the following questions: Do reconstructed flood hydrographs over critical infrastructures provide valuable insight into flooding thresholds and frequencies? If so, how? To address these questions, the team consists of members with expertise in engineering hydrology and computer sciences and engineering who are positioned to deliver the needed collecting, examining, and archiving of perishable datasets. The methodology for collecting perishable data merges the broader objectives of enhancing perishable data collection through the use of traditional (tape measure, engineer's rule, etc.) and data analytics techniques, both of which depend on the timely collection of data. The reconstructed flood hydrographs for overtopped routes/roads and bridges will help understanding of how critical infrastructures respond to hurricane-induced flooding that presents persistent widespread challenges in many regions worldwide. The collected data will benefit the development of new numerical models for flood prediction that will deal with the unique needs and concepts of the U.S.'s southeast catchments (shallow aquifer parameterization). The data analytics algorithm is targeted be flexible and scalable to collect and analyze large sets of data which will be disseminated through open-source public repositories (e.g., GitHub). The collection and integration of data is targeted to facilitate communication/ collaboration between decision makers and technically-focused institutions. This project is intended to have an immediate impact on South Carolina, a state which is very vulnerable to repeated hurricane events and is under the threat of increasing floods.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在南卡罗来纳州佛罗伦萨飓风过后,这项研究旨在收集被淹没/损坏的关键基础设施的高水位线 (HWM) 数据,以及来自交通摄像头和社交媒体的易腐烂的图像和视频片段。然后,调查人员将使用数据分析算法和 HWM 数据重建飓风佛罗伦萨洪水过程线 (HF2Hs),以估计洪水高程和漫溢道路和桥梁的淹没范围。该 RAPID 项目以南卡罗来纳州东部 (SC) 为案例研究,将解决以下问题:关键基础设施上重建的洪水过程线是否可以提供有关洪水阈值和频率的宝贵见解?如果是这样,怎么办?为了解决这些问题,该团队由具有工程水文学、计算机科学和工程学专业知识的成员组成,他们负责提供易腐烂数据集所需的收集、检查和归档服务。收集易腐烂数据的方法融合了通过使用传统(卷尺、工程师尺等)和数据分析技术来增强易腐烂数据收集的更广泛目标,这两种技术都依赖于数据的及时收集。重建的淹没路线/道路和桥梁的洪水过程线将有助于了解关键基础设施如何应对飓风引发的洪水,这种洪水在全球许多地区构成了持续存在的广泛挑战。收集到的数据将有利于开发新的洪水预测数值模型,该模型将处理美国东南部流域的独特需求和概念(浅层含水层参数化)。数据分析算法的目标是灵活且可扩展,以收集和分析大量数据,这些数据将通过开源公共存储库(例如 GitHub)传播。数据的收集和整合旨在促进决策者和以技术为重点的机构之间的沟通/协作。该项目旨在对南卡罗来纳州产生直接影响,该州非常容易遭受反复的飓风事件,并面临日益严重的洪水威胁。该奖项反映了 NSF 的法定使命,并通过使用基金会的评估进行评估,认为值得支持。智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A national scale big data analytics pipeline to assess the potential impacts of flooding on critical infrastructures and communities
全国范围的大数据分析管道,用于评估洪水对关键基础设施和社区的潜在影响
  • DOI:
    10.1016/j.envsoft.2020.104828828
  • 发表时间:
    2020-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N.Donratanapat; S.Samadi
  • 通讯作者:
    S.Samadi
Application of image processing and convolutional neural networks for flood image classification and semantic segmentation
图像处理和卷积神经网络在洪水图像分类和语义分割中的应用
  • DOI:
    10.1016/j.envsoft.2021.105285
  • 发表时间:
    2021-12-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jaku Rabinder Rakshit Pally;jpally
  • 通讯作者:
    jpally
Application of Image Processing and Big Data Science for Flood Label Detection
图像处理和大数据科学在洪水标签检测中的应用
  • DOI:
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pally, R;Samadi, S.
  • 通讯作者:
    Samadi, S.
The Convergence of IoT, Machine Learning, and Big Data for Advancing Flood Analytics Knowledge
物联网、机器学习和大数据的融合促进洪水分析知识的发展
  • DOI:
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Samadi, S;Pally, R.
  • 通讯作者:
    Pally, R.
A national scale big data analytics pipeline to assess the potential impacts of flooding on critical infrastructures and communities
全国范围的大数据分析管道,用于评估洪水对关键基础设施和社区的潜在影响
  • DOI:
    10.1016/j.envsoft.2020.104828
  • 发表时间:
    2020-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Donratanapata, N.;Samadi, S;Vidal, J.M.;Sadeghi Tabas, S.
  • 通讯作者:
    Sadeghi Tabas, S.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vidya Samadi其他文献

Fill-and-Spill: Deep Reinforcement Learning Policy Gradient Methods for Reservoir Operation Decision and Control
满溢:水库运行决策与控制的深度强化学习策略梯度方法
  • DOI:
    10.48550/arxiv.2403.04195
  • 发表时间:
    2024-03-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sadegh Sadeghi Tabas;Vidya Samadi
  • 通讯作者:
    Vidya Samadi
Converging Human Intelligence with AI Systems to Advance Flood Evacuation Decision Making
将人类智能与人工智能系统相融合,推进洪水疏散决策
Challenges and opportunities when bringing machines onto the team: Human-AI teaming and flood evacuation decisions
将机器引入团队时的挑战和机遇:人机协作和洪水疏散决策
  • DOI:
    10.1016/j.envsoft.2024.105976
  • 发表时间:
    2024-02-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vidya Samadi;Keri K. Stephens;A. Hughes;Pamela Murray
  • 通讯作者:
    Pamela Murray
DX-FloodLine: End-To-End Deep Explainable Pipeline for Real Time Flood Scene Object Detection From Multimedia Images
DX-FloodLine:用于从多媒体图像中实时检测洪水场景对象的端到端深度可解释管道
  • DOI:
    10.1109/access.2023.3321312
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Nushrat Humaira;Vidya Samadi;N. Hubig
  • 通讯作者:
    N. Hubig

Vidya Samadi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vidya Samadi', 18)}}的其他基金

Collaborative Research: CyberTraining: Implementation: Small: Inclusive Cyberinfrastructure and Machine Learning Training to Advance Water Science Research
合作研究:网络培训:实施:小型:包容性网络基础设施和机器学习培训,以推进水科学研究
  • 批准号:
    2320979
  • 财政年份:
    2024
  • 资助金额:
    $ 3.04万
  • 项目类别:
    Standard Grant
SCC-PG : Human-AI Teaming for Flood Evacuation Decision Making
SCC-PG:人机协作进行洪水疏散决策
  • 批准号:
    2125283
  • 财政年份:
    2021
  • 资助金额:
    $ 3.04万
  • 项目类别:
    Standard Grant
RAPID: Reconstruction of Hurricane Florence Flood Hydrographs (HF2Hs) for South Carolina's Critical Infrastructures Using Data Analytics Algorithms and In-situ Field Measurements
RAPID:使用数据分析算法和现场现场测量重建南卡罗来纳州关键基础设施的飓风弗洛伦斯洪水过程线 (HF2Hs)
  • 批准号:
    1901646
  • 财政年份:
    2018
  • 资助金额:
    $ 3.04万
  • 项目类别:
    Standard Grant

相似国自然基金

基于自监督学习的非规则网格混采数据分离与重建方法研究
  • 批准号:
    42304125
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
镁合金支架降解与血管重建匹配机理评价指数构建及设计方法研究
  • 批准号:
    12362030
  • 批准年份:
    2023
  • 资助金额:
    31 万元
  • 项目类别:
    地区科学基金项目
基于VR相机全景视频跨平台影像增量式三维重建与模型增强方法研究
  • 批准号:
    42371439
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
电针唤醒并重建大鼠大脑“感觉运动网络”促进脑损伤后肢体运动功能康复的机制研究
  • 批准号:
    82305421
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
时间分辨的光谱视频成像火焰化学发光三维层析重建方法研究
  • 批准号:
    52376158
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

Puerto Rico Panel Study of Income Dynamics (PR-PSID)
波多黎各收入动态小组研究 (PR-PSID)
  • 批准号:
    10284665
  • 财政年份:
    2021
  • 资助金额:
    $ 3.04万
  • 项目类别:
Puerto Rico Panel Study of Income Dynamics (PR-PSID)
波多黎各收入动态小组研究 (PR-PSID)
  • 批准号:
    10657678
  • 财政年份:
    2021
  • 资助金额:
    $ 3.04万
  • 项目类别:
Agile development of innovative, interactive hazard recognition and mitigationtools/learning e-platforms for workers involved in the rescue and recovery operations indiverse flooding environments
为参与不同洪水环境的救援和恢复行动的工作人员敏捷开发创新的交互式危险识别和缓解工具/学习电子平台
  • 批准号:
    9753678
  • 财政年份:
    2019
  • 资助金额:
    $ 3.04万
  • 项目类别:
Coordination of NGO and Government Roles in Housing Provision after Mega Disasters in Urban Areas: the Cases of Houston after Hurricane Harvey and Palu after the Sulawesi Earthquake and Tsunami
城市地区特大灾难后非政府组织和政府在住房供应方面的协调:飓风哈维后的休斯顿案例以及苏拉威西地震和海啸后的帕鲁案例
  • 批准号:
    19K04784
  • 财政年份:
    2019
  • 资助金额:
    $ 3.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
RAPID: Reconstruction of Atmospheric Observatory at Pico Este, Puerto Rico, After the Impact of Hurricane Maria
RAPID:飓风玛丽亚影响后波多黎各皮科埃斯特大气观测站的重建
  • 批准号:
    1826924
  • 财政年份:
    2018
  • 资助金额:
    $ 3.04万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了