SBIR Phase I: Machine learning-powered simulation of additive manufacturing for real-time design and process optimization
SBIR 第一阶段:基于机器学习的增材制造仿真,用于实时设计和流程优化
基本信息
- 批准号:2151667
- 负责人:
- 金额:$ 25.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broader impact of this Small Business Innovation Research (SBIR) Phase I project is to accelerate larger-scale adoption of additive manufacturing (AM) through ultrafast engineering simulation software. The AM industry was worth $12.6 billion in 2020 and holds great potential in providing advanced designs and enabling distributed supply chains for the US aerospace, medical, and automotive industries. However, AM is facing slow adoption due to trial and error processes casued by the lack of an efficient and reliable engineering workflow. The proposed ultrafast simulation technology may provide real-time predictions of possible manufacturing issues for AM parts in the design phase, thereby reducing manufacturing failures and prototyping. The project also seeks to generate systematic knowledge of how machine learning can help overcome some long-lasting fundamental challenges in scientific computing and help advance engineering software used for digital manufacturing. This Small Business Innovation Research (SBIR) Phase I project integrates machine learning with finite element methods (FEM) to develop a proof-of-concept for 3-5 orders of magnitude faster process simulation software for AM used to predict manufacturing failures due to high temperature, residual distortion, and residual stresses. The traditional computation method for part-scale AM simulation takes hours to days and relies on an iterative, layer-wise approach. The proposed project seeks to replace the most time-consuming steps in the traditional simulation method with deep learning and implement a one-step approach. The proposed hybrid data-driven plus physical simulation framework includes the development a feature-driven, deep learning model and a process parameter-based transfer learning model, and coupling these models with the finite element method. The project also aims to apply and benchmark hybrid datasets from AM physical modelling, three-dimentional (3D) scanning of manufactured parts, and in-situ monitoring for training and model scalability. The team seeks to demonstrate technological advantages through pilot testing with streamlined user interfaces and application programming interfaces (APIs) developed in this project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该小型企业创新研究 (SBIR) 第一阶段项目的更广泛影响是通过超快工程仿真软件加速增材制造 (AM) 的大规模采用。 2020 年增材制造行业价值 126 亿美元,在为美国航空航天、医疗和汽车行业提供先进设计和实现分布式供应链方面具有巨大潜力。然而,由于缺乏高效可靠的工程工作流程而导致反复试验过程,增材制造正面临着缓慢的采用过程。所提出的超快仿真技术可以在设计阶段实时预测增材制造零件可能出现的制造问题,从而减少制造故障和原型设计。该项目还寻求生成系统知识,了解机器学习如何帮助克服科学计算中一些长期存在的基本挑战,并帮助推进用于数字制造的工程软件。这个小型企业创新研究 (SBIR) 第一阶段项目将机器学习与有限元方法 (FEM) 相结合,开发概念验证,使增材制造过程仿真软件的速度提高 3-5 个数量级,用于预测由于高电压导致的制造故障。温度、残余变形和残余应力。部分规模增材制造仿真的传统计算方法需要数小时到数天的时间,并且依赖于迭代、逐层方法。该项目旨在用深度学习取代传统模拟方法中最耗时的步骤,并实现一步法。所提出的混合数据驱动加物理仿真框架包括开发特征驱动的深度学习模型和基于过程参数的迁移学习模型,并将这些模型与有限元方法耦合。该项目还旨在应用来自增材制造物理建模、制造零件的三维 (3D) 扫描以及培训和模型可扩展性现场监控的混合数据集并对其进行基准测试。该团队力求通过本项目中开发的简化用户界面和应用程序编程接口 (API) 进行试点测试来展示技术优势。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查进行评估,被认为值得支持标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Runze Huang其他文献
Evaluating a Combined Method of UV and Washing for Sanitizing Blueberries, Tomatoes, Strawberries, Baby Spinach, and Lettuce.
评估紫外线和清洗相结合的蓝莓、西红柿、草莓、小菠菜和生菜消毒方法。
- DOI:
10.4315/0362-028x.jfp-18-524 - 发表时间:
2019 - 期刊:
- 影响因子:2
- 作者:
Shuanghuan Guo;Runze Huang;Haiqiang Chen - 通讯作者:
Haiqiang Chen
A Parametric Life Cycle Modeling Framework for Identifying Research Development Priorities of Emerging Technologies: A Case Study of Additive Manufacturing
用于确定新兴技术研究开发优先事项的参数化生命周期建模框架:增材制造案例研究
- DOI:
10.1016/j.procir.2019.01.037 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Yuan Yao;Runze Huang - 通讯作者:
Runze Huang
High hydrostatic pressure inactivation of murine norovirus and human noroviruses on green onions and in salsa.
高静水压灭活大葱和莎莎酱中的鼠诺如病毒和人诺如病毒。
- DOI:
10.1016/j.ijfoodmicro.2016.11.003 - 发表时间:
2017 - 期刊:
- 影响因子:5.4
- 作者:
Robert F Sido;Runze Huang;Chuhan Liu;Haiqiang Chen - 通讯作者:
Haiqiang Chen
Environmental and Economic Implications of Distributed Additive Manufacturing: The Case of Injection Mold Tooling
分布式增材制造的环境和经济影响:注塑模具案例
- DOI:
10.1111/jiec.12641 - 发表时间:
2017 - 期刊:
- 影响因子:5.9
- 作者:
Runze Huang;Matthew E. Riddle;D. Graziano;Sujit Das;Sachin U. Nimbalkar;J. Cresko;E. Masanet - 通讯作者:
E. Masanet
Lack of association between single nucleotide polymorphisms in TCF7L2 and T2DM in the Chinese Yao population
中国瑶族人群TCF7L2单核苷酸多态性与T2DM之间缺乏关联
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:1.6
- 作者:
Shih;Runze Huang;Huang Huang;Mingqi Zhang;Hui - 通讯作者:
Hui
Runze Huang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
热带河口特有鱼类尖鳍鲤早期生活史不同阶段的栖息地利用变化及驱动机制
- 批准号:32360917
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
PPP项目跨阶段监管机制研究
- 批准号:72301115
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
抗生素对不同生长阶段蓝藻光合电子传递和生理代谢的影响及分子机制研究
- 批准号:52300219
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于现代监测的湘西惹迷洞MIS2阶段石笋碳同位素和微量元素记录重建研究
- 批准号:42371164
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
高层钢结构建模-优化-深化的跨阶段智能设计方法
- 批准号:52308142
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
SBIR Phase I: An inclusive machine learning-based digital platform to credential soft skills
SBIR 第一阶段:一个基于机器学习的包容性数字平台,用于认证软技能
- 批准号:
2317077 - 财政年份:2024
- 资助金额:
$ 25.59万 - 项目类别:
Standard Grant
SBIR Phase I: Sown To Grow - Measuring Growth in Trusting Relationships between Students and Educators with Natural Language Processing and Machine Learning Technologies
SBIR 第一阶段:播种成长 - 使用自然语言处理和机器学习技术衡量学生和教育工作者之间信任关系的增长
- 批准号:
2322340 - 财政年份:2023
- 资助金额:
$ 25.59万 - 项目类别:
Standard Grant
SBIR Phase I: Proximate Wind Forecasts: A New Machine Learning Approach to Increasing Wind Energy Production
SBIR 第一阶段:风力预测:增加风能产量的新机器学习方法
- 批准号:
2309367 - 财政年份:2023
- 资助金额:
$ 25.59万 - 项目类别:
Standard Grant
SBIR Phase II: A Novel Human Machine Interface for Assistive Robots
SBIR 第二阶段:辅助机器人的新型人机界面
- 批准号:
2223169 - 财政年份:2023
- 资助金额:
$ 25.59万 - 项目类别:
Cooperative Agreement
SBIR Phase II: Quantification of Operative Performance via Simulated Surgery, Capacitive Sensing, and Machine Learning to Improve Surgeon Performance & Medical Device Develop
SBIR 第二阶段:通过模拟手术、电容传感和机器学习量化手术表现,以提高外科医生的表现
- 批准号:
2223976 - 财政年份:2023
- 资助金额:
$ 25.59万 - 项目类别:
Cooperative Agreement