SBIR Phase I: Proximate Wind Forecasts: A New Machine Learning Approach to Increasing Wind Energy Production
SBIR 第一阶段:风力预测:增加风能产量的新机器学习方法
基本信息
- 批准号:2309367
- 负责人:
- 金额:$ 27.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-15 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broader/commercial impact of this Small Business Innovation Research (SBIR) Phase I project will be to demonstrate the potential to increase (by 2%) wind-energy production from existing wind farms at very low cost. Combining networked, air-pressure sensors distributed on the landscape with artificial intelligence/machine learning (AI/ML), the technology will empower wind farm operators with advance alerts of oncoming winds and gusts to preemptively adjust settings like blade pitch and turbine yaw. These adjustments will result in more wind energy production and less turbine damage. This technology will significantly increase energy revenues and decrease costs. In 2022, US wind farms produced 380 terawatt hours (TWh) of energy. If serving just half of existing plants, this technology could yield an additional 3.8 TWh of renewable energy and over $150 million to US wind energy sales annually. In the competitive wind industry, these revenues can greatly increase operating margins and help accelerate the growth of the industry and clean energy jobs. Using government emissions figures, this deployment would also avert 2.4 gigatons of carbon dioxide (GTCO2) over 20 years. This wind alert technology could also benefit solar tracker safety and increase safety at aerial vehicle ports and lift-crane operations.This Small Business Innovation Research (SBIR) Phase I project will show how wind can be measured and predicted 10–600 seconds in the future by combining a new sensor modality — distributed pressure sensors — with new machine learning (ML) models. Pressure sensors are far cheaper than wind sensors (e.g., Doppler LIDAR), but processing data from pressure sensors into predictions of the wind is complex. It is impossible to hand-code statistical models to predict turbine-height wind from ground-level pressure measurements. Instead, one may rely on learned ML models to make these predictions. Previous studies have used ML to model weather on regional or global scales, but this project is the first to create models for the much smaller and more demanding scales applicable to wind farm operation and to optimize for metrics important to wind farm operators. Because ML models have not yet been developed directly for combined pressure and wind data at this spatial and temporal scale, this project will combine advances in attention-based models (like Transformers) with advances in models that respect physical priors (like Hamiltonian Neural Networks) and will lead to a new form of sensing which will be far more accurate than was previously possible at this price point.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该小型企业创新研究 (SBIR) 第一阶段项目的更广泛/商业影响将是展示结合联网气压传感器以极低的成本将现有风电场的风能产量提高(2%)的潜力。该技术通过人工智能/机器学习(AI/ML)分布在景观中,使风电场运营商能够提前发出迎面风和阵风的警报,从而预先调整叶片桨距和涡轮机偏航等设置。该技术将显着增加能源收入并降低成本,到 2022 年,美国风电场的发电量将达到 380 太瓦时 (TWh),如果仅服务于现有发电厂的一半,则该技术可额外产生 3.8 太瓦时的发电量。太瓦时的可再生能源和每年超过 1.5 亿美元的美国风能销售额在竞争激烈的风能行业中,这些收入可以大大增加运营利润,并有助于加速该行业和清洁能源就业的增长。 20 年内,这种风警报技术还可以减少 2.4 亿吨二氧化碳 (GTCO2) 的排放,并有利于太阳能跟踪器的安全性,并提高飞行器港口和起重机操作的安全性。小型企业创新研究 (SBIR) 第一阶段项目将展示这一点。如何通过将新的传感器模式(分布式压力传感器)与新的机器学习 (ML) 模型相结合来测量和预测未来 10-600 秒的风。压力传感器比风传感器便宜得多(例如,多普勒激光雷达),但将压力传感器的数据处理为风的预测是很复杂的,不可能手动编写统计模型来根据地面压力测量来预测涡轮机高度风。之前的研究已经使用机器学习在区域或全球范围内对天气进行建模,但该项目是第一个为适用于风电场运营的更小且要求更高的规模创建模型的项目,并优化对风电场运营商重要的指标。 .因为ML模型还没有然而,该项目是直接针对这种空间和时间尺度上的组合压力和风数据而开发的,该项目将结合基于注意力的模型(如 Transformers)的进步与尊重物理先验的模型(如哈密顿神经网络)的进步,并将导致一种新的传感形式,在这个价位上比以前更准确。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason Yosinski其他文献
Jason Yosinski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
热带河口特有鱼类尖鳍鲤早期生活史不同阶段的栖息地利用变化及驱动机制
- 批准号:32360917
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
PPP项目跨阶段监管机制研究
- 批准号:72301115
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
抗生素对不同生长阶段蓝藻光合电子传递和生理代谢的影响及分子机制研究
- 批准号:52300219
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多活性纳米酶多靶点全阶段治疗特发性肺纤维化
- 批准号:32371438
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于现代监测的湘西惹迷洞MIS2阶段石笋碳同位素和微量元素记录重建研究
- 批准号:42371164
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
UK involvement in LSST: Phase C (Imperial component)
英国参与 LSST:C 阶段(帝国部分)
- 批准号:
ST/X001326/1 - 财政年份:2025
- 资助金额:
$ 27.43万 - 项目类别:
Research Grant
Phase 2 - Effective and Integrated Chemical Free Robotic Milking
第 2 阶段 - 有效且集成的无化学品机器人挤奶
- 批准号:
10093094 - 财政年份:2024
- 资助金额:
$ 27.43万 - 项目类别:
Collaborative R&D
Net Zero Pathfinder - Phase 2 Manchester
净零探路者 - 第二阶段曼彻斯特
- 批准号:
10095254 - 财政年份:2024
- 资助金额:
$ 27.43万 - 项目类别:
Demonstrator
Phase Averaged Deferred Correction for Multi-Timescale Systems
多时间尺度系统的相位平均延迟校正
- 批准号:
EP/Y032624/1 - 财政年份:2024
- 资助金额:
$ 27.43万 - 项目类别:
Research Grant
Model order reduction for fast phase-field fracture simulations
快速相场断裂模拟的模型降阶
- 批准号:
EP/Y002474/1 - 财政年份:2024
- 资助金额:
$ 27.43万 - 项目类别:
Research Grant