SBIR Phase I: Proximate Wind Forecasts: A New Machine Learning Approach to Increasing Wind Energy Production
SBIR 第一阶段:风力预测:增加风能产量的新机器学习方法
基本信息
- 批准号:2309367
- 负责人:
- 金额:$ 27.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-15 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broader/commercial impact of this Small Business Innovation Research (SBIR) Phase I project will be to demonstrate the potential to increase (by 2%) wind-energy production from existing wind farms at very low cost. Combining networked, air-pressure sensors distributed on the landscape with artificial intelligence/machine learning (AI/ML), the technology will empower wind farm operators with advance alerts of oncoming winds and gusts to preemptively adjust settings like blade pitch and turbine yaw. These adjustments will result in more wind energy production and less turbine damage. This technology will significantly increase energy revenues and decrease costs. In 2022, US wind farms produced 380 terawatt hours (TWh) of energy. If serving just half of existing plants, this technology could yield an additional 3.8 TWh of renewable energy and over $150 million to US wind energy sales annually. In the competitive wind industry, these revenues can greatly increase operating margins and help accelerate the growth of the industry and clean energy jobs. Using government emissions figures, this deployment would also avert 2.4 gigatons of carbon dioxide (GTCO2) over 20 years. This wind alert technology could also benefit solar tracker safety and increase safety at aerial vehicle ports and lift-crane operations.This Small Business Innovation Research (SBIR) Phase I project will show how wind can be measured and predicted 10–600 seconds in the future by combining a new sensor modality — distributed pressure sensors — with new machine learning (ML) models. Pressure sensors are far cheaper than wind sensors (e.g., Doppler LIDAR), but processing data from pressure sensors into predictions of the wind is complex. It is impossible to hand-code statistical models to predict turbine-height wind from ground-level pressure measurements. Instead, one may rely on learned ML models to make these predictions. Previous studies have used ML to model weather on regional or global scales, but this project is the first to create models for the much smaller and more demanding scales applicable to wind farm operation and to optimize for metrics important to wind farm operators. Because ML models have not yet been developed directly for combined pressure and wind data at this spatial and temporal scale, this project will combine advances in attention-based models (like Transformers) with advances in models that respect physical priors (like Hamiltonian Neural Networks) and will lead to a new form of sensing which will be far more accurate than was previously possible at this price point.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项小型企业创新研究(SBIR)I阶段项目的广播/商业影响将证明现有风电场以非常低的成本增加(提高2%)风能生产的可能性。该技术结合了在景观上分布在景观上的网络,空气接种传感器(AI/ML),该技术将使风电场操作员有能力,并提前警报即将来临的风和阵风,以预先调整刀片俯仰和涡轮偏航等设置。这些调整将导致更多的风能产生和减少涡轮机损坏。该技术将大大增加能源揭示并降低成本。 2022年,美国风电场生产了380 Terawatt小时(TWH)的能源。如果仅提供现有工厂的一半,则该技术每年可能会产生3.8 TWH的可再生能源,每年为美国风能销售提供超过1.5亿美元。在竞争性风能行业中,这些揭示可以大大提高营业利润率,并有助于加速行业的增长和清洁能源就业机会。使用政府的排放数据,这种部署还将在20年内避免2.4千克二氧化碳(GTCO2)。这种风警报技术还可以使太阳能跟踪器的安全有益于太阳能跟踪器的安全性,并提高航空车端口和升降机操作的安全性。该小型企业创新研究(SBIR)I阶段项目将显示如何通过组合新的传感器方式 - 与新的压力传感器与新机器学习(ML)模型相结合,将来如何测量风和预测10-600秒。压力传感器比风传感器(例如,多普勒激光雷达)便宜得多,但是从压力传感器到风的预测数据很复杂。无法手动统计模型从地面压力测量中预测涡轮高的风。取而代之的是,人们可能会依靠学习的ML模型来做出这些预测。先前的研究已经使用ML来模拟区域或全球量表的天气,但是该项目是第一个为适用于风电场运营的较小且苛刻的尺度创建模型的模型,并优化对风电场运营商重要的指标。由于ML模型尚未直接开发用于在这个空间和临时范围内的压力和风数据,因此该项目将结合基于注意力的模型(例如变形金刚)的进步与尊重身体先验(例如Hamiltonian神经网络)(例如Hamiltonian神经网络)的进步的进步,并将导致一种新形式的传感形式,这将比以前的Proite Point and Proime更准确。基金会的智力优点和更广泛的影响评论标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason Yosinski其他文献
Jason Yosinski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
服务供给方两阶段在线贡献行为的激励机制研究——以公立互联网医院为例
- 批准号:72372016
- 批准年份:2023
- 资助金额:40.6 万元
- 项目类别:面上项目
黄土高原人工刺槐林不同发育阶段水分利用规律与耗水机制
- 批准号:42307415
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
壳斗科植物传播前阶段种子捕食的地理格局及其驱动机制
- 批准号:32371612
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
计及海量多元逆变资源下垂参数动态优化的配电网多阶段协调运行研究
- 批准号:52307091
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非洲爪蟾IV型干扰素IFN-upsilon在不同发育阶段的抗病毒功能研究
- 批准号:32303043
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
UK involvement in LSST: Phase C (Imperial component)
英国参与 LSST:C 阶段(帝国部分)
- 批准号:
ST/X001326/1 - 财政年份:2025
- 资助金额:
$ 27.43万 - 项目类别:
Research Grant
Phase 2 - Effective and Integrated Chemical Free Robotic Milking
第 2 阶段 - 有效且集成的无化学品机器人挤奶
- 批准号:
10093094 - 财政年份:2024
- 资助金额:
$ 27.43万 - 项目类别:
Collaborative R&D
Net Zero Pathfinder - Phase 2 Manchester
净零探路者 - 第二阶段曼彻斯特
- 批准号:
10095254 - 财政年份:2024
- 资助金额:
$ 27.43万 - 项目类别:
Demonstrator
Phase Averaged Deferred Correction for Multi-Timescale Systems
多时间尺度系统的相位平均延迟校正
- 批准号:
EP/Y032624/1 - 财政年份:2024
- 资助金额:
$ 27.43万 - 项目类别:
Research Grant
Model order reduction for fast phase-field fracture simulations
快速相场断裂模拟的模型降阶
- 批准号:
EP/Y002474/1 - 财政年份:2024
- 资助金额:
$ 27.43万 - 项目类别:
Research Grant