CAESAR: Characterizing and Understanding Atmospheric Boundary Layer Fluxes, Structure and Cloud Property Evolution in Arctic Cold Air Outbreaks
CAESAR:描述和理解北极冷空气爆发时的大气边界层通量、结构和云特性演化
基本信息
- 批准号:2151075
- 负责人:
- 金额:$ 84.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Arctic climate is changing at a faster pace than anywhere on Earth. Climate projections indicate that the Arctic will continue to warm, but uncertainties arise due to questions about the future behavior of Arctic clouds. An area of primary uncertainty is the properties of clouds that form during cold-air outbreaks, where very cold airmasses over the Arctic ice move southward over the relatively warm open ocean. This award will help to provide observational data of these clouds (and precipitation) and the exchange of energy between the ocean and atmosphere during the Cold-Air outbreak Experiment in the Sub-Arctic Region (CAESAR), which will be conducted in Spring 2024 out of northern Scandinavia. The observations collected during CAESAR will be used to better understand the characteristics of the cold-air outbreak system, and the Arctic climate system more broadly, to inform climate models and projections. The project will also help to improve forecasting of weather hazards with significant relevance to naval operations, commercial shipping, and coastal communities. The broader field effort includes significant opportunities for students and early-career scientists, international collaboration, and public outreach. This specific project includes a training component for senior level undergraduate students on field methods and observations that will parallel the planning and execution of the CAESAR campaign.This goal of this project is to use multiple remote sensor and in-situ measurements to (1) characterize Marine Boundary Layer (MBL) fluxes, structure and cloud properties and (2) understand the process controlling the evolution of MBL fluxes, structures and cloud properties during cold-air outbreaks (CAOs). The research team will deploy the Multi-function Airborne Raman Lidar (MARLi) and the nadir-only Airborne Doppler Lidar (ADL) to provide profiles of water vapor, temperature, air vertical velocity, and aerosol/cloud structure below the NSF/NCAR C-130 research aircraft to document MBL thermodynamic and dynamic structures, mixing across the MBL top, and cloud phase and property distributions. Analysis of MARLi and ADL data, combined with other observations and modeling during CAESAR, will allow the team to focus on understanding of how upstream boundary layer stratification and wind, MBL rolls and small-scale vertical motions, and surface fluxes and Atmospheric Boundary Layer (ABL) top entrainment/mixing controls MBL development and evolution during CAOs. In addition, these measurements will address the question of how aerosol, MBL processes, and cloud dynamics (stratiform and convective clouds) impact mixed-phase cloud properties, especially liquid-ice mass partitioning.Primary funding for this project comes from the Physical and Dynamic Meteorology program with partial funding from the Arctic Natural Sciences program. The deployment of observational assets for CAESAR is being funded by the Facilities for Atmospheric Research and Education program.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
北极气候的变化比地球上任何地方都要快。 气候预测表明,北极将继续温暖,但由于对北极云的未来行为的疑问,出现了不确定性。 主要不确定性的区域是在冷空气中爆发过程中形成的云的特性,北极冰上的非常冷的气动在相对温暖的开阔海洋上向南移动。 该奖项将有助于提供这些云(以及降水)的观察数据,以及在亚北极地区(凯撒)的冷空气爆发实验期间(凯撒)在海洋和大气之间的能量交换,该实验将于2024年春季在斯堪的纳维亚半岛北部进行。 凯撒期间收集的观察结果将用于更好地了解冷空气爆发系统的特征,以及更广泛的北极气候系统,以告知气候模型和预测。 该项目还将有助于改善与海军行动,商业航运和沿海社区的重要相关性的天气危害的预测。 更广泛的现场努力包括学生和早期职业科学家,国际合作和公共宣传的重要机会。 This specific project includes a training component for senior level undergraduate students on field methods and observations that will parallel the planning and execution of the CAESAR campaign.This goal of this project is to use multiple remote sensor and in-situ measurements to (1) characterize Marine Boundary Layer (MBL) fluxes, structure and cloud properties and (2) understand the process controlling the evolution of MBL fluxes, structures and cloud properties during cold-air outbreaks (CAO)。 研究小组将部署多功能空气载拉曼激光雷达(MARLI)和仅纳迪尔空降的多普勒激光雷达(ADL),以提供水蒸气,温度,空气垂直速度以及在NSF/NCAR C-130研究飞机下的含量,空气垂直速度以及在NSF/NCAR C-130研究飞机下进行MMBL热点和动态群体,并在分布。 对玛丽和ADL数据的分析,结合了凯撒期间的其他观察结果和建模,将使团队能够专注于了解上游边界层分层和风,MBL滚动和小规模的垂直运动以及表面通量以及大气边界层(ABL)顶部夹带/混合/混合控制MBL在CAOS期间的发展和进化。 此外,这些测量结果将解决气溶胶,MBL过程和云动力学(层状和对流云)如何影响混合相云特性,尤其是液体冰质量分配。该项目的主要资金来自北极自然科学计划的部分资金,来自物理和动态气象学计划。 凯撒观察资产的部署由大气研究和教育计划的设施提供资金。该奖项反映了NSF的法定任务,并且使用基金会的知识分子优点和更广泛的影响审查标准,被认为值得通过评估来获得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhien Wang其他文献
Anvil Productivities of Tropical Deep Convective Clusters and Their Regional Differences
热带深对流星团的砧生产力及其区域差异
- DOI:
10.1175/jas-d-15-0239.1 - 发表时间:
2016 - 期刊:
- 影响因子:3.1
- 作者:
M. Deng;G. Mace;Zhien Wang - 通讯作者:
Zhien Wang
LIDAR and RADAR Observations
激光雷达和雷达观测
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
J. Pelon;G. Vali;G. Ancellet;G. Ehret;P. Flamant;S. Haimov;G. Heymsfield;D. Leon;J. Mead;A. Pazmany;A. Protat;Zhien Wang;M. Wolde - 通讯作者:
M. Wolde
Association of Antarctic polar stratospheric cloud formation on tropospheric cloud systems
南极极地平流层云形成与对流层云系统的关联
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Zhien Wang;G. Stephens;T. Deshler;C. Trepte;T. Parish;D. Vane;D. Winker;Dong Liu;L. Adhikari - 通讯作者:
L. Adhikari
Improved tropical deep convective cloud detection using MODIS observations with an active sensor trained machine learning algorithm
使用 MODIS 观测和主动传感器训练的机器学习算法改进热带深对流云检测
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:13.5
- 作者:
Kang Yang;Zhien Wang;M. Deng;Brennan Dettmann - 通讯作者:
Brennan Dettmann
Intercomparison of model simulations of mixed‐phase clouds observed during the ARM Mixed‐Phase Arctic Cloud Experiment. II: Multilayer cloud
ARM 混合相北极云实验 II:多层云期间观测到的混合相云模型模拟的相互比较。
- DOI:
10.1002/qj.415 - 发表时间:
2008 - 期刊:
- 影响因子:8.9
- 作者:
H. Morrison;R. McCoy;S. Klein;S. Xie;Yali Luo;A. Avramov;Mingxuan Chen;J. Cole;M. Falk;M. Foster;A. D. Del Genio;J. Harrington;C. Hoose;M. Khairoutdinov;V. Larson;Xiaohong Liu;G. McFarquhar;M. Poellot;K. von Salzen;B. Shipway;M. Shupe;Y. Sud;D. Turner;D. Veron;G. Walker;Zhien Wang;Audrey B. Wolf;Kuan Xu;Fanglin Yang;Gong Zhang - 通讯作者:
Gong Zhang
Zhien Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhien Wang', 18)}}的其他基金
Collaborative Research: Sundowner Winds EXperiment (SWEX) in Santa Barbara, California
合作研究:加利福尼亚州圣巴巴拉的日落风实验 (SWEX)
- 批准号:
1921596 - 财政年份:2020
- 资助金额:
$ 84.84万 - 项目类别:
Standard Grant
Collaborative Research: Observing and Understanding Planetary Boundary Layer (PBL) Heterogeneities and Their Impacts on Tornadic Storms during VORTEX-SE 2018 Field Experiment
合作研究:在 VORTEX-SE 2018 现场实验期间观察和理解行星边界层 (PBL) 异质性及其对龙卷风暴的影响
- 批准号:
1917693 - 财政年份:2019
- 资助金额:
$ 84.84万 - 项目类别:
Standard Grant
MRI: Development of a Multi-function Airborne Raman Lidar for Atmospheric Process Studies
MRI:开发用于大气过程研究的多功能机载拉曼激光雷达
- 批准号:
1337599 - 财政年份:2013
- 资助金额:
$ 84.84万 - 项目类别:
Standard Grant
Exploiting Synergies between Remote Sensing and in Situ Measurements during ICE-T to Better Understand Ice Generation in Tropical Clouds
利用 ICE-T 期间遥感和现场测量之间的协同作用,更好地了解热带云中的冰生成
- 批准号:
1034858 - 财政年份:2011
- 资助金额:
$ 84.84万 - 项目类别:
Continuing Grant
Collaborative Research: Colorado Airborne Multi-Phase Cloud Study (CAMPS)
合作研究:科罗拉多机载多相云研究 (CAMPS)
- 批准号:
0964184 - 财政年份:2010
- 资助金额:
$ 84.84万 - 项目类别:
Continuing Grant
CAREER: Developing New Airborne Cloud, Aerosol and Water Vapor Observation Capabilities by Synergizing Remote Sensors and in Situ Probes on the University of Wyoming King Air
职业:通过协同怀俄明大学国王航空的远程传感器和原位探测器开发新的机载云、气溶胶和水蒸气观测能力
- 批准号:
0645644 - 财政年份:2007
- 资助金额:
$ 84.84万 - 项目类别:
Continuing Grant
相似国自然基金
考虑多层次社会网络的乡村居民活动-出行行为特征辨识及决策机理解析
- 批准号:72361015
- 批准年份:2023
- 资助金额:26 万元
- 项目类别:地区科学基金项目
复杂交通网络环境下公共交通出行起讫点特征机理解析与短时预测
- 批准号:62362044
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于多视角跨模态特征融合的大场景监控视频人群状态理解方法研究
- 批准号:62306264
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向语义内容理解和艺术特征表示的视觉属性迁移方法研究
- 批准号:62202360
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于跨模态图文特征联合表达的视觉内容层次化理解关键技术研究
- 批准号:62106154
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
RAPID: Characterizing and Understanding Smoke Transport in 2023 Hawaii Wildfire Event Using Geostationary Satellite Observations and Numerical Modeling
RAPID:利用对地静止卫星观测和数值模拟描述和理解 2023 年夏威夷野火事件中的烟雾输送
- 批准号:
2345272 - 财政年份:2023
- 资助金额:
$ 84.84万 - 项目类别:
Standard Grant
Characterizing patient-specific TBR1 mutations: Understanding a master regulator of autism risk.
表征患者特异性 TBR1 突变:了解自闭症风险的主要调节因子。
- 批准号:
10590496 - 财政年份:2022
- 资助金额:
$ 84.84万 - 项目类别:
Collaborative Research: Data Fusion for Characterizing and Understanding Water Flow Systems in Karst Aquifers
合作研究:用于表征和理解岩溶含水层水流系统的数据融合
- 批准号:
1931756 - 财政年份:2020
- 资助金额:
$ 84.84万 - 项目类别:
Standard Grant
Collaborative Research: Data Fusion for Characterizing and Understanding Water Flow Systems in Karst Aquifers
合作研究:用于表征和理解岩溶含水层水流系统的数据融合
- 批准号:
1933779 - 财政年份:2020
- 资助金额:
$ 84.84万 - 项目类别:
Standard Grant
Collaborative Research: Data Fusion for Characterizing and Understanding Water Flow Systems in Karst Aquifers
合作研究:用于表征和理解岩溶含水层水流系统的数据融合
- 批准号:
1933365 - 财政年份:2020
- 资助金额:
$ 84.84万 - 项目类别:
Standard Grant