Collaborative Research: Observing and Understanding Planetary Boundary Layer (PBL) Heterogeneities and Their Impacts on Tornadic Storms during VORTEX-SE 2018 Field Experiment
合作研究:在 VORTEX-SE 2018 现场实验期间观察和理解行星边界层 (PBL) 异质性及其对龙卷风暴的影响
基本信息
- 批准号:1917693
- 负责人:
- 金额:$ 32.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
High-impact weather phenomena such as high winds, hail, and heavy rainfall have huge socio-economic impacts. However, forecast for severe high-impact weather events, especially tornadoes, remains challenging. Historically, tornado research has been concentrated in the Great Plains while the Southeastern U.S. commonly experiences devastating tornadoes as well. Significant differences in environmental conditions over the two regions and frequent occurrence of tornadoes at night in the Southeast (SE) pose challenges to observing and understanding the formation and development of tornadoes in the SE. The Verification of the Origins of Rotation in Tornadoes Experiment - Southeast (VORTEX-SE) is a research program designed to understand how environments in the SE affect the formation, intensity, structure, and path of tornadoes in this region. During the VORTEX-SE field campaign in 2018, unprecedented advanced measurements from an airplane flying around tornadoes have been collected. Such observations cannot be done easily on the ground with hilly forest terrain. The study will utilize the unique observations and advanced computer models to understand airflow structures of tornadic storms and special environments for their formation. New knowledge gained from the research will contribute to improvement of tornado forecasting across the U.S. This project will provide support and training to graduate students in atmospheric measurement technologies, data analysis, and computer modeling and prepare them to become future scientists in severe weather research and prediction.The research team will conduct observational data analysis and advanced data assimilation that integrate observations and atmospheric prediction models. The unprecedented observation includes an advanced downward-pointing Compact Raman Lidar (CRL), a horizontally scanning lower fuselage (LF) radar, and dual Tail Doppler Radars (TDRs) onboard of a NOAA P-3 aircraft. The CRL is capable of measuring high-spatial and temporal resolution of water vapor, temperature, and aerosol profiles in the atmospheric boundary layer upstream of moving storms. Together with the P-3's in-situ measurements and the LF and TDR radar observations, unprecedented characterization of tornadic environments is expected. In addition, tornado-resolving numerical simulations will be performed, and variational, and ensemble-based data analysis and assimilation techniques will be applied. The primary goals of the project include: (1) characterization of spatial heterogeneities and temporal evolution of the PBL around convective storms in the VORTEX-SE domain with CRL measurements; (2) analysis and understanding of the impact of PBL heterogeneities on tornadic storms by synthesizing P-3 and other available observations; (3) identification and understanding of key physical processes involved in the tornadic storms through model simulations with advanced data assimilation methods. The synergy of airborne radar and lidar data with high-resolution model simulations will help pave the way for potentially transformative future process-oriented field experiments.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
高风,冰雹和大降雨等高影响的天气现象具有巨大的社会经济影响。但是,预测严重的高影响力事件,尤其是龙卷风,仍然具有挑战性。从历史上看,龙卷风研究集中在大平原上,而美国东南部通常也经历了毁灭性龙卷风。在这两个区域的环境条件上存在显着差异,并在东南(SE)夜间经常出现龙卷风在观察和理解SE中龙卷风的形成和发展方面构成了挑战。龙卷风实验中旋转起源的验证-Southeast(Vortex -SE)是一项研究计划,旨在了解SE中的环境如何影响该地区龙卷风的形成,强度,结构和路径。在2018年的Vortex-SE野外活动中,已经收集了飞机飞行龙卷风的前所未有的高级测量。在丘陵森林地形上,不能轻易地在地面上进行此类观察。这项研究将利用独特的观察结果和高级计算机模型来了解龙卷风风暴和特殊环境的空气水流结构。从研究中获得的新知识将有助于改善美国各地的龙卷风预测,该项目将为大气测量技术,数据分析和计算机建模的研究生提供支持和培训,并准备它们成为严重天气研究和预测的未来科学家。该研究团队将进行观察数据分析和高级数据同化,以进行观察性数据分析,以综合观察预测模型。前所未有的观察结果包括高级向下紧凑型拉曼激光雷(CRL),水平扫描下部机身(LF)雷达以及NOAA P-3飞机的双尾多普勒雷达(TDRS)。 CRL能够测量移动风暴上游大气边界层中水蒸气,温度和气溶胶剖面的高空间和时间分辨率。与P-3的原位测量以及LF和TDR雷达观测值一起,预计龙卷风环境的前所未有的表征。此外,还将进行龙卷风分辨的数值模拟,并将应用基于合奏的数据分析和集合数据分析和同化技术。该项目的主要目标包括:(1)表征空间异质性和PBL围绕对流风暴的时间演变,并具有CRL测量值; (2)通过合成P-3和其他可用观察结果,分析和理解PBL异质性对龙卷风风暴的影响; (3)通过使用高级数据同化方法的模型模拟对龙卷风风暴中涉及的关键物理过程的识别和理解。与高分辨率模型模拟的空中雷达和激光雷达数据的协同作用将有助于为潜在的变革性变革的未来以过程为导向的实地实验铺平道路。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的审查标准来通过评估来通过评估来支持的。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Convection initiation and bore formation following the collision of mesoscale boundaries over a developing stable boundary layer: a case study from PECAN
发展中的稳定边界层上的中尺度边界碰撞后的对流引发和孔形成:PECAN 的案例研究
- DOI:10.1175/mwr-d-20-0282.1
- 发表时间:2021
- 期刊:
- 影响因子:3.2
- 作者:Lin, Guo;Grasmick, Coltin;Geerts, Bart;Wang, Zhien;Deng, Min
- 通讯作者:Deng, Min
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhien Wang其他文献
Anvil Productivities of Tropical Deep Convective Clusters and Their Regional Differences
热带深对流星团的砧生产力及其区域差异
- DOI:
10.1175/jas-d-15-0239.1 - 发表时间:
2016 - 期刊:
- 影响因子:3.1
- 作者:
M. Deng;G. Mace;Zhien Wang - 通讯作者:
Zhien Wang
LIDAR and RADAR Observations
激光雷达和雷达观测
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
J. Pelon;G. Vali;G. Ancellet;G. Ehret;P. Flamant;S. Haimov;G. Heymsfield;D. Leon;J. Mead;A. Pazmany;A. Protat;Zhien Wang;M. Wolde - 通讯作者:
M. Wolde
Improved tropical deep convective cloud detection using MODIS observations with an active sensor trained machine learning algorithm
使用 MODIS 观测和主动传感器训练的机器学习算法改进热带深对流云检测
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:13.5
- 作者:
Kang Yang;Zhien Wang;M. Deng;Brennan Dettmann - 通讯作者:
Brennan Dettmann
Association of Antarctic polar stratospheric cloud formation on tropospheric cloud systems
南极极地平流层云形成与对流层云系统的关联
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Zhien Wang;G. Stephens;T. Deshler;C. Trepte;T. Parish;D. Vane;D. Winker;Dong Liu;L. Adhikari - 通讯作者:
L. Adhikari
Intercomparison of model simulations of mixed‐phase clouds observed during the ARM Mixed‐Phase Arctic Cloud Experiment. II: Multilayer cloud
ARM 混合相北极云实验 II:多层云期间观测到的混合相云模型模拟的相互比较。
- DOI:
10.1002/qj.415 - 发表时间:
2008 - 期刊:
- 影响因子:8.9
- 作者:
H. Morrison;R. McCoy;S. Klein;S. Xie;Yali Luo;A. Avramov;Mingxuan Chen;J. Cole;M. Falk;M. Foster;A. D. Del Genio;J. Harrington;C. Hoose;M. Khairoutdinov;V. Larson;Xiaohong Liu;G. McFarquhar;M. Poellot;K. von Salzen;B. Shipway;M. Shupe;Y. Sud;D. Turner;D. Veron;G. Walker;Zhien Wang;Audrey B. Wolf;Kuan Xu;Fanglin Yang;Gong Zhang - 通讯作者:
Gong Zhang
Zhien Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhien Wang', 18)}}的其他基金
CAESAR: Characterizing and Understanding Atmospheric Boundary Layer Fluxes, Structure and Cloud Property Evolution in Arctic Cold Air Outbreaks
CAESAR:描述和理解北极冷空气爆发时的大气边界层通量、结构和云特性演化
- 批准号:
2151075 - 财政年份:2023
- 资助金额:
$ 32.58万 - 项目类别:
Continuing Grant
Collaborative Research: Sundowner Winds EXperiment (SWEX) in Santa Barbara, California
合作研究:加利福尼亚州圣巴巴拉的日落风实验 (SWEX)
- 批准号:
1921596 - 财政年份:2020
- 资助金额:
$ 32.58万 - 项目类别:
Standard Grant
MRI: Development of a Multi-function Airborne Raman Lidar for Atmospheric Process Studies
MRI:开发用于大气过程研究的多功能机载拉曼激光雷达
- 批准号:
1337599 - 财政年份:2013
- 资助金额:
$ 32.58万 - 项目类别:
Standard Grant
Exploiting Synergies between Remote Sensing and in Situ Measurements during ICE-T to Better Understand Ice Generation in Tropical Clouds
利用 ICE-T 期间遥感和现场测量之间的协同作用,更好地了解热带云中的冰生成
- 批准号:
1034858 - 财政年份:2011
- 资助金额:
$ 32.58万 - 项目类别:
Continuing Grant
Collaborative Research: Colorado Airborne Multi-Phase Cloud Study (CAMPS)
合作研究:科罗拉多机载多相云研究 (CAMPS)
- 批准号:
0964184 - 财政年份:2010
- 资助金额:
$ 32.58万 - 项目类别:
Continuing Grant
CAREER: Developing New Airborne Cloud, Aerosol and Water Vapor Observation Capabilities by Synergizing Remote Sensors and in Situ Probes on the University of Wyoming King Air
职业:通过协同怀俄明大学国王航空的远程传感器和原位探测器开发新的机载云、气溶胶和水蒸气观测能力
- 批准号:
0645644 - 财政年份:2007
- 资助金额:
$ 32.58万 - 项目类别:
Continuing Grant
相似国自然基金
出生前后多种农药暴露波动轨迹与青春期儿童肥胖的关系:基于一项前瞻性出生队列的观察与机制研究
- 批准号:82373533
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
脉冲磁场作用下7075铝合金定向凝固晶粒细化过程的原位观察和元胞自动机模拟研究
- 批准号:52304415
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
丘脑在观察学习及相关疾病中的研究
- 批准号:32371059
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
直播电商情景下多主体互动对购买决策的影响机制研究——基于“主播—互动参与者—互动观察者”三元关系的视角
- 批准号:72302036
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
职场网络闲逛行为的作用结果及其反馈效应——基于行为者和观察者视角的整合研究
- 批准号:72302108
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: GreenFjord-FIBER, Observing the Ice-Ocean Interface with Exceptional Resolution
合作研究:GreenFjord-FIBER,以卓越的分辨率观测冰海界面
- 批准号:
2338503 - 财政年份:2024
- 资助金额:
$ 32.58万 - 项目类别:
Standard Grant
Collaborative Research: GreenFjord-FIBER, Observing the Ice-Ocean Interface with Exceptional Resolution
合作研究:GreenFjord-FIBER,以卓越的分辨率观测冰海界面
- 批准号:
2338502 - 财政年份:2024
- 资助金额:
$ 32.58万 - 项目类别:
Standard Grant
Collaborative Research: EAGER--Evaluation of Optimal Mesonetwork Design for Monitoring and Predicting North American Monsoon (NAM) Convection Using Observing System Simulation
合作研究:EAGER——利用观测系统模拟监测和预测北美季风(NAM)对流的最佳中观网络设计评估
- 批准号:
2308410 - 财政年份:2023
- 资助金额:
$ 32.58万 - 项目类别:
Standard Grant
Collaborative Research: SitS: Improving Rice Cultivation by Observing Dynamic Soil Chemical Processes from Grain to Landscape Scales
合作研究:SitS:通过观察从谷物到景观尺度的动态土壤化学过程来改善水稻种植
- 批准号:
2226647 - 财政年份:2023
- 资助金额:
$ 32.58万 - 项目类别:
Standard Grant
Collaborative Research: SitS: Improving Rice Cultivation by Observing Dynamic Soil Chemical Processes from Grain to Landscape Scales
合作研究:SitS:通过观察从谷物到景观尺度的动态土壤化学过程来改善水稻种植
- 批准号:
2226648 - 财政年份:2023
- 资助金额:
$ 32.58万 - 项目类别:
Standard Grant