Collaborative Research: NSF-BSF: Photophysiology and bio-optics of Red Sea mesophotic corals

合作研究:NSF-BSF:红海中光珊瑚的光生理学和生物光学

基本信息

项目摘要

Tropical coral reefs are hotspots of biodiversity and provide critical services to numerous coastal communities worldwide. A combination of global and local stressors have led to the unprecedented degradation of shallow water coral reef communities. Most importantly, elevated water temperatures combined with excess solar radiation can cause coral bleaching, which describes the loss of the coral’s symbiotic algae and is regarded as the major threat to the future existence of shallow-water reefs. Thus, corals from deep waters are gaining interest as they are expected to be buffered from extreme environmental impacts more commonly experienced in shallow waters. Surprisingly, corals are flourishing in habitats where sunlight barely reaches, and 30-150 m depth mesophotic coral reef ecosystems (MCEs) are characterized by unique coral communities that could serve as a refuge for shallow water corals. In this project, we aim to study the light-harvesting mechanisms that allow corals to thrive under such light-limited conditions using a multidisciplinary approach that combines state-of-the-art bioengineering, bio-optics, and coral physiology tools. Since corals are among the most efficient aquatic photosynthetic systems, studying coral bio-optics can also lead to the discovery of novel light-harvesting mechanisms and the development of novel coral-inspired photonic materials to build more efficient and sustainable photobioreactors. This is a US-Israel binational project that aims to promote international collaboration and diversity through a range of public outreach activities, including museum exhibitions and the design of creative experiences to support the participation of under-represented groups in STEM.Light is a key driver of coral community change along the coral reef depth gradient. However, the importance of irradiance for the existence and growth of corals has been predominantly studied in shallow species, and knowledge of how mesophotic corals thrive despite extremely limited light conditions is largely lacking. This study will provide a quantitative assessment of light-harvesting at mesophotic depths and offer novel insights into the role of bio-optics and irradiance in structuring coral communities. To achieve our goal, we will employ an interdisciplinary approach to establish the bio-optical properties of mesophotic corals. Our workflow combines (1) in-situ coral reef fieldwork in Eilat (Red Sea, Israel) to collect and analyze corals along a depth-irradiance gradient, (2) lab-based light microsensor measurements combined with analyses of endogenous green fluorescent protein and photosynthetic assays; (3) optical coherence tomography and microcomputed tomography to characterize tissue and skeletal morphology for the development of 3D light-capture models using Monte Carlo simulations; and (3) a novel 3D bioprinting approach to experimentally determine the roles of coral skeleton morphology on photosynthesis. Altogether, this research will provide the essential basis for theoretical models that seek to understand the spatial distribution of mesophotic coral reef ecosystems and predict their responses to environmental change, therefore offering a practical tool for reef management and conservation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
热带珊瑚礁是生物多样性的热点,为全球众多沿海社区提供了关键服务,全球和当地的压力因素共同导致了浅水珊瑚礁群落的前所未有的退化。最重要的是,水温升高和过多的太阳辐射可能导致。珊瑚白化,指的是珊瑚共生藻类的丧失,被认为是对浅水珊瑚礁未来存在的主要威胁。因此,来自深水的珊瑚越来越受到人们的关注,因为它们有望更好地抵御极端环境的影响。通常令人惊讶的是,珊瑚在阳光几乎无法到达的栖息地中繁衍生息,30-150 m 深度的中光珊瑚礁生态系统 (MCE) 的特点是独特的珊瑚群落,可以作为浅水珊瑚的避难所。 ,我们的目标是利用结合了最先进的生物工程、生物光学和珊瑚的多学科方法,研究使珊瑚在这种光线有限的条件下茁壮成长的光捕获机制由于珊瑚是最有效的水生光合作用系统之一,研究珊瑚生物光学还可以发现新颖的光捕获机制并开发新型珊瑚启发的光子材料,以构建更高效和可持续的光生物反应器。是一个美国-以色列两国项目,旨在通过一系列公共宣传活动促进国际合作和多样性,包括博物馆展览和创意体验设计,以支持代表性不足的群体参与STEM.光是珊瑚礁深度梯度上珊瑚群落变化的关键驱动因素。然而,辐照度对于珊瑚存在和生长的重要性主要在浅层物种中进行研究,并且了解中光珊瑚如何在极其有限的光照下茁壮成长。这项研究将对中光深度的光采集进行定量评估,并为生物光学和辐照度在构建珊瑚群落中的作用提供新的见解。我们的工作流程结合了(1)埃拉特(以色列红海)的原位珊瑚礁实地工作,以沿着深度-辐照度梯度收集和分析珊瑚,(2)实验室。 - 基于组合光微传感器测量与内源性绿色荧光蛋白和光合作用分析的分析(3)光学相干断层扫描和微计算机断层扫描,以表征组织和骨骼形态,以开发使用蒙特卡罗模拟的 3D 光捕获模型;(3) 一种新颖的 3D 生物打印方法,用于通过实验确定珊瑚骨骼形态对光合作用的作用。总之,这项研究将为寻求了解空间分布的理论模型提供必要的基础。该奖项反映了 NSF 的法定使命,并通过利用基金会的智力优势和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Martin Tresguerres其他文献

Modulation of ion uptake across posterior gills of the crab Chasmagnathus granulatus by dopamine and cAMP.
多巴胺和环磷酸腺苷调节蟹 Chasmagnathus grinatus 后鳃的离子摄取。
Intracellular pH regulation in isolated trout gill mitochondrion-rich (MR) cell subtypes: evidence for Na+/H+ activity.
离体鳟鱼鳃富含线粒体 (MR) 细胞亚型的细胞内 pH 调节:Na /H 活性的证据。

Martin Tresguerres的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Martin Tresguerres', 18)}}的其他基金

Acid/base sensing and regulation of multiple physiological processes in fish
鱼类多种生理过程的酸/碱传感和调节
  • 批准号:
    1754994
  • 财政年份:
    2018
  • 资助金额:
    $ 21.16万
  • 项目类别:
    Continuing Grant
Carbon dioxide, pH and bicarbonate sensing in sharks
鲨鱼的二氧化碳、pH 值和碳酸氢盐传感
  • 批准号:
    1354181
  • 财政年份:
    2014
  • 资助金额:
    $ 21.16万
  • 项目类别:
    Continuing Grant
Ocean Acidification: Physiological Mechanisms for CO2-sensing and Related Intracellular Signaling Pathways in Corals
海洋酸化:珊瑚二氧化碳感应和相关细胞内信号通路的生理机制
  • 批准号:
    1220641
  • 财政年份:
    2012
  • 资助金额:
    $ 21.16万
  • 项目类别:
    Standard Grant
Collaborative Research: Searching for Links Between Genotype and Phenotype in the Evolution of Air Breathing, Hypoxia, and Terrestriality in Gobies
合作研究:寻找虾虎鱼空气呼吸、缺氧和陆地性进化中基因型和表型之间的联系
  • 批准号:
    0922569
  • 财政年份:
    2009
  • 资助金额:
    $ 21.16万
  • 项目类别:
    Standard Grant

相似国自然基金

SYNJ1蛋白片段通过促进突触蛋白NSF聚集在帕金森病发生中的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
NSF蛋白亚硝基化修饰所介导的GluA2 containing-AMPA受体膜稳定性在卒中后抑郁中的作用及机制研究
  • 批准号:
    82071300
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
circ100783作为miR-34b分子海绵在铅暴露海马SNARE 复合体形成和突触囊泡释放中的机制研究
  • 批准号:
    81872577
  • 批准年份:
    2018
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
Mon1b 协同NSF调控早期内吞体膜融合的机制研究
  • 批准号:
    31671397
  • 批准年份:
    2016
  • 资助金额:
    67.0 万元
  • 项目类别:
    面上项目
美国国家科学基金会组织与管理的法律制度研究
  • 批准号:
    L0822107
  • 批准年份:
    2008
  • 资助金额:
    9.5 万元
  • 项目类别:
    专项基金项目

相似海外基金

Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
  • 批准号:
    2412551
  • 财政年份:
    2024
  • 资助金额:
    $ 21.16万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
  • 批准号:
    2333889
  • 财政年份:
    2024
  • 资助金额:
    $ 21.16万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
  • 批准号:
    2333888
  • 财政年份:
    2024
  • 资助金额:
    $ 21.16万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321481
  • 财政年份:
    2024
  • 资助金额:
    $ 21.16万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321480
  • 财政年份:
    2024
  • 资助金额:
    $ 21.16万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了