RINGS: Enabling Data-Driven Innovation for Next-Generation Networks Via Synthetic Data
RINGS:通过综合数据为下一代网络实现数据驱动的创新
基本信息
- 批准号:2148359
- 负责人:
- 金额:$ 100万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Next-generation networked systems are increasingly data-driven, meaning they are developed, tuned, and tested on real data. For instance, data-driven techniques can enable better quality of experience for content distribution over the Internet, better wireless communication techniques, and better attack detection techniques for emerging cybersecurity threats. Unfortunately, a pervasive lack of data limits the potential of data-driven research and development. Data holders are often reluctant to share datasets for fear of revealing business secrets or running afoul of regulations. These data access challenges will become (and already are) a fundamental stumbling block for innovation in next-generation networks.This project aims to tackle this impasse with synthetic data —-- data that exhibits the same statistical patterns as real data, without the need to explicitly share the original source data. Synthetic datasets can be safely released to enable cross-stakeholder collaboration. Synthetic data generation techniques, however, have classically suffered from poor data quality. This proposal explores how to leverage and extend recent advances in machine learning to use Generative Adversarial Networks (GANs) to generate synthetic models of networking datasets. Realizing the potential benefits of GAN-generated synthetic data for networking systems, however, is challenging on multiple fronts. First, network traffic datasets (e.g., packet captures) entail complex relationships that raise new fidelity and scalability implications for prior GAN models. Second, networking use cases pose new (and traditional) privacy requirements, and the resulting privacy-fidelity tradeoffs remain poorly understood. Finally, several networking use cases entail studying rare or extreme events (e.g., outages, flash crowds, attacks). Data for such extreme events by definition is rare and challenging for GANs (or any synthetic data model) to learn. This project will tackle interdisciplinary challenges spanning networking, machine learning, and privacy to develop novel foundations for GAN-enabled workflows for supporting data-driven operations in next-generation network systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
下一代网络系统越来越由数据驱动,这意味着它们是根据真实数据进行开发、调整和测试的。例如,数据驱动技术可以为互联网上的内容分发提供更好的体验质量,更好的无线通信技术,以及。不幸的是,数据的普遍缺乏限制了数据驱动的研究和开发的潜力,因为担心泄露商业秘密或违反法规。挑战将成为(并且已经是)该项目旨在通过合成数据来解决这一僵局——表现出与真实数据相同的统计模式的数据,而无需显式地共享原始源数据。然而,安全发布以实现跨利益相关者协作的合成数据生成技术通常会受到数据质量不佳的影响。该提案探讨了如何利用和扩展机器学习的最新进展,以使用生成对抗网络(GAN)来生成数据。然而,认识到 GAN 生成的合成数据对网络系统的潜在好处在多个方面都具有挑战性,首先,网络流量数据集(例如数据包捕获)需要复杂的关系,这会带来新的保真度和可扩展性影响。第二个网络用例提出了新的(和传统的)隐私要求,而由此产生的隐私保真度权衡仍然知之甚少。最后,一些网络用例需要研究罕见或极端事件(例如,中断、闪存)。从定义上来说,此类极端事件的数据对于 GAN(或任何合成数据模型)来说非常罕见且具有挑战性,该项目将解决网络、机器学习和隐私方面的跨学科挑战,为 GAN 开发新的基础。支持下一代网络系统中数据驱动操作的工作流程。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Gen-T: Reduce Distributed Tracing Operational Costs Using Generative Models
Gen-T:使用生成模型降低分布式跟踪运营成本
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Tochner, Saar;Fanti, Giulia;Sekar, Vyas
- 通讯作者:Sekar, Vyas
Mixture-of-Linear-Experts for Long-term Time Series Forecasting
- DOI:10.48550/arxiv.2312.06786
- 发表时间:2023-12
- 期刊:
- 影响因子:0
- 作者:Ronghao Ni;Zinan Lin;Shuaiqi Wang;Giulia Fanti
- 通讯作者:Ronghao Ni;Zinan Lin;Shuaiqi Wang;Giulia Fanti
Benchmarking Private Population Data Release Mechanisms: Synthetic Data vs. TopDown
- DOI:10.48550/arxiv.2401.18024
- 发表时间:2024-01
- 期刊:
- 影响因子:0
- 作者:Aadyaa Maddi;Swadhin Routray;Alexander Goldberg;Giulia Fanti
- 通讯作者:Aadyaa Maddi;Swadhin Routray;Alexander Goldberg;Giulia Fanti
Practical GAN-based synthetic IP header trace generation using NetShare
- DOI:10.1145/3544216.3544251
- 发表时间:2022-08
- 期刊:
- 影响因子:0
- 作者:Yucheng Yin;Zinan Lin;Minhao Jin;G. Fanti;Vyas Sekar
- 通讯作者:Yucheng Yin;Zinan Lin;Minhao Jin;G. Fanti;Vyas Sekar
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Giulia Fanti其他文献
Conan : Distributed Proofs of Compliance for Anonymous Data Collection
柯南:匿名数据收集的分布式合规性证明
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Mingxun Zhou;Elaine Shi;Giulia Fanti - 通讯作者:
Giulia Fanti
A Queue-based Mechanism for Unlinkability under Batched-timing Attacks
批量定时攻击下基于队列的不可链接机制
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Alexander Goldberg;Giulia Fanti;Nihar B. Shah - 通讯作者:
Nihar B. Shah
The Role of User-Agent Interactions on Mobile Money Practices in Kenya and Tanzania
用户代理交互对肯尼亚和坦桑尼亚移动货币实践的作用
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Karen Sowon;Edith Luhanga;L. Cranor;Giulia Fanti;Conrad Tucker;Assane Gueye - 通讯作者:
Assane Gueye
Giulia Fanti的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Giulia Fanti', 18)}}的其他基金
CAREER: Theory and Practice of Privacy-Utility Tradeoffs in Enterprise Data Sharing
职业:企业数据共享中隐私与效用权衡的理论与实践
- 批准号:
2338772 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
Travel: Student Travel Grant for the 2023 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems
旅费:2023 年 ACM SIGMETRICS 国际计算机系统测量和建模会议学生旅费补助
- 批准号:
2308412 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Accountability for Central Bank Digital Currency
协作研究:SaTC:核心:小型:中央银行数字货币的责任
- 批准号:
2325477 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
NSF Convergence Accelerator Track - Track D - AI-Enabled, Privacy-Preserving Information Sharing for Securing Network Infrastructure
NSF 融合加速器轨道 - 轨道 D - 支持人工智能、保护隐私的信息共享,以确保网络基础设施的安全
- 批准号:
2040675 - 财政年份:2020
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
相似海外基金
CC* Networking Infrastructure: Enabling Big Science and Big Data Projects at the University of Massachusetts
CC* 网络基础设施:支持马萨诸塞大学的大科学和大数据项目
- 批准号:
2346286 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
CRII: CSR: Enabling On-Device Continual Learning through Enhancing Efficiency of Computing, Memory, and Data
CRII:CSR:通过提高计算、内存和数据的效率实现设备上的持续学习
- 批准号:
2348376 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
PROMETHEUS: Enabling a Data Rich Additive Manufacturing Process
PROMETHEUS:实现数据丰富的增材制造流程
- 批准号:
10092251 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Collaborative R&D
THUNDER - THermochemical storage Utilization eNabling Data centre seasonal Energy Recovery
THUNDER - 热化学存储利用 eNabling 数据中心季节性能源回收
- 批准号:
10088548 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
EU-Funded
An innovative EDI data, insights & peer benchmarking platform enabling global business leaders to build data-led EDI strategies, plans and budgets.
创新的 EDI 数据、见解
- 批准号:
10100319 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Collaborative R&D