CAREER: Enhancing Deep-Learning-based Code Analyses via Human Intelligence
职业:通过人类智能增强基于深度学习的代码分析
基本信息
- 批准号:2146443
- 负责人:
- 金额:$ 52.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-01 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).With the increasing availability of the millions of programs in open-source repositories, many techniques have been proposed to leverage deep-learning models to automatically learn patterns from large code bases to assist various software engineering tasks (e.g., security analysis, bug detection). However the proposed deep-learning models still face many input programs that are beyond a model’s handling capability due to many reasons (e.g., evolution of the program code). Because of the lack of understanding about these inputs, many software-engineering applications in industrial practice still make decisions based on symbolic-reasoning systems where decision logic and rules are hard-coded by a human. Human intelligence (e.g., rules summarized by humans) tends to be simplistic and reductionistic, while deep-learning models can be opaque and overfitted. If one can somehow combine the best of the two worlds, many existing challenges will disappear. Therefore, this proposal seeks to make progress on such a combination. The broad goal of this proposal is to design a general framework that improves deep-learning models’ handling of input programs by incorporating human intelligence. Specifically, two main issues are faced by existing deep-learning models in handling code data: (1) lack of understanding about inherent nature of code data, and (2) lack of domain-specific knowledge of software-engineering tasks. To address these fundamental limitations, this project proposes to design a general, user-driven learning-based framework. In the short term, this project aims to improve the practicality of intelligent code-analysis techniques and facilitate the adoption of deep learning techniques in code analysis. In the long run, this project has the potential to fundamentally transform the learning-based techniques for code analysis in software-engineering applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项的全部或部分资金来源于《2021 年美国救援计划法案》(公法 117-2)。随着开源存储库中数百万个程序的可用性不断增加,人们提出了许多利用深度学习的技术然而,由于多种原因,所提出的深度学习模型仍然面临着许多超出模型处理能力的输入程序。 (例如,程序代码的演变)。由于缺乏对这些输入的理解,工业实践中的许多软件工程应用程序仍然基于符号推理系统做出决策,其中决策逻辑和规则是由人类硬编码的。人类智能(例如,人类总结的规则)往往是简单化和简化的,而深度学习模型可能是不透明的和过度拟合的,如果能够以某种方式将两个世界的优点结合起来,许多现有的挑战将会消失。该提案旨在在这种组合上取得进展,其总体目标是设计一个通用框架,通过结合人类智能来改进深度学习模型对输入程序的处理。具体来说,现有的深度学习面临两个主要问题。处理代码数据的学习模型:(1)缺乏对代码数据固有性质的理解,(2)缺乏软件工程任务的特定领域知识为了解决这些基本限制,该项目建议设计一个通用的、从短期来看,这个项目是基于用户驱动的学习框架。旨在提高智能代码分析技术的实用性,并促进深度学习技术在代码分析中的采用。从长远来看,该项目有可能从根本上改变软件工程应用中基于学习的代码分析技术。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
EREBA: Black-box Energy Testing of Adaptive Neural Networks
- DOI:10.1145/3510003.3510088
- 发表时间:2022-02
- 期刊:
- 影响因子:0
- 作者:Mirazul Haque;Yaswanth Yadlapalli;Wei Yang;Cong Liu
- 通讯作者:Mirazul Haque;Yaswanth Yadlapalli;Wei Yang;Cong Liu
DeepPerform: An Efficient Approach for Performance Testing of Resource-Constrained Neural Networks
- DOI:10.1145/3551349.3561158
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:Simin Chen;Mirazul Haque;Cong Liu;Wei Yang
- 通讯作者:Simin Chen;Mirazul Haque;Cong Liu;Wei Yang
NICGSlowDown: Evaluating the Efficiency Robustness of Neural Image Caption Generation Models
- DOI:10.1109/cvpr52688.2022.01493
- 发表时间:2022-03
- 期刊:
- 影响因子:0
- 作者:Simin Chen;Zihe Song;Mirazul Haque;Cong Liu;Wei Yang
- 通讯作者:Simin Chen;Zihe Song;Mirazul Haque;Cong Liu;Wei Yang
NMTSloth: understanding and testing efficiency degradation of neural machine translation systems
- DOI:10.1145/3540250.3549102
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:Simin Chen;Cong Liu;Mirazul Haque;Zihe Song;Wei Yang
- 通讯作者:Simin Chen;Cong Liu;Mirazul Haque;Zihe Song;Wei Yang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei Yang其他文献
Relationships between IVIM parameters and expressions of PD-L1 and PD-1 in patients with cervical cancer
宫颈癌患者IVIM参数与PD-L1、PD-1表达的关系
- DOI:
- 发表时间:
- 期刊:
- 影响因子:2.6
- 作者:
Kaihui Liu;Wei Yang;Haiping Tian - 通讯作者:
Haiping Tian
Busy road frontage influences on-farm adoption of visible good management practices
繁忙的道路临街影响农场采用可见的良好管理实践
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:5.1
- 作者:
Zack Dorner;J. Knook;Wei Yang;P. Stahlmann - 通讯作者:
P. Stahlmann
Robust weld line detection with cross structured light and hidden Markov model
- DOI:
10.1109/icma.2012.6284343 - 发表时间:
2012-01-01 - 期刊:
- 影响因子:0
- 作者:
Liguo Zhang;Jianbin Jiao;Wei Yang - 通讯作者:
Wei Yang
Structural behavior of prefabricated bamboo-lightweight concrete composite beams with perforated steel plate
预制穿孔钢板竹-轻质混凝土组合梁的结构性能
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:4.4
- 作者:
Wei Yang;Wang Zhiyuan;Chen Si;Zhao Kang;Zheng Kaiqi - 通讯作者:
Zheng Kaiqi
span style=line-height:150%;font-family:Times New Roman;font-size:12pt;A New a Posteriori Error Estimate for Adaptive Finite Element Methods/span
自适应有限元方法的新后验误差估计
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Yunqing Huang;Huayi Wei;Wei Yang;Nianyu Yi - 通讯作者:
Nianyu Yi
Wei Yang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wei Yang', 18)}}的其他基金
Collaborative Research: CCRI: Planning-C: An Infrastructure and Dataset for Research in Android Testing & Analysis
合作研究:CCRI:Planning-C:Android 测试研究的基础设施和数据集
- 批准号:
2235137 - 财政年份:2023
- 资助金额:
$ 52.71万 - 项目类别:
Standard Grant
EAGER: Free Energy Sampling of Biomolecular Dynamics at Biological Timescales
EAGER:生物时间尺度上生物分子动力学的自由能采样
- 批准号:
1839694 - 财政年份:2018
- 资助金额:
$ 52.71万 - 项目类别:
Standard Grant
Who will care for you when you get old? A study of inequities in health and long-term care among the elderly in rural China
当你老了谁来照顾你?
- 批准号:
ES/N002717/1 - 财政年份:2016
- 资助金额:
$ 52.71万 - 项目类别:
Research Grant
Who will care for you when you get old? A study of inequities in health and long-term care among the elderly in rural China
当你老了谁来照顾你?
- 批准号:
ES/N002717/2 - 财政年份:2016
- 资助金额:
$ 52.71万 - 项目类别:
Research Grant
Achieving Long Timescale Sampling in Biomolecular Simulations
在生物分子模拟中实现长时间尺度采样
- 批准号:
1158284 - 财政年份:2012
- 资助金额:
$ 52.71万 - 项目类别:
Standard Grant
Achieving Long Timescale Sampling in Biomolecular Simulations
在生物分子模拟中实现长时间尺度采样
- 批准号:
0919983 - 财政年份:2009
- 资助金额:
$ 52.71万 - 项目类别:
Standard Grant
A Workshop in Plasticity and Commemorative Volume in Honor of Professor E.H. Lee
可塑性研讨会及纪念E.H.教授纪念册
- 批准号:
9019931 - 财政年份:1990
- 资助金额:
$ 52.71万 - 项目类别:
Standard Grant
相似国自然基金
面向复杂量化失真场景的图像视频位深增强研究
- 批准号:62371333
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向深空应用的高光谱图像高精度分类方法研究
- 批准号:61901343
- 批准年份:2019
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
基于光场调控深亚波长结构集成的二维材料光电耦合增强机理与探测应用
- 批准号:91850208
- 批准年份:2018
- 资助金额:350.0 万元
- 项目类别:重大研究计划
碳填料和深冷处理对聚醚酰亚胺复合材料的力学与摩擦磨损性能的影响
- 批准号:11872132
- 批准年份:2018
- 资助金额:63.0 万元
- 项目类别:面上项目
钼合金燃料包壳激光深熔焊接头的合金化强韧机制与“寄生”钎焊同步增强效应
- 批准号:51775416
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Enhancing Temperature Visualization in Boiling Fluid over Finned Surfaces using Deep Learning-Enhanced Laser-Induced Fluorescence
职业:使用深度学习增强激光诱导荧光增强翅片表面沸腾流体的温度可视化
- 批准号:
2337973 - 财政年份:2024
- 资助金额:
$ 52.71万 - 项目类别:
Continuing Grant
Learn, transfer, generate: Developing novel deep learning models for enhancing robustness and accuracy of small-scale single-cell RNA sequencing studies
学习、转移、生成:开发新颖的深度学习模型,以增强小规模单细胞 RNA 测序研究的稳健性和准确性
- 批准号:
10535708 - 财政年份:2023
- 资助金额:
$ 52.71万 - 项目类别:
Enhancing diagnosis of Parkinson's disease and multiple system atrophy via detection of alpha-synuclein seeding activity
通过检测 α-突触核蛋白播种活性增强帕金森病和多系统萎缩的诊断
- 批准号:
10454097 - 财政年份:2020
- 资助金额:
$ 52.71万 - 项目类别:
Enhancing diagnosis of Parkinson's disease and multiple system atrophy via detection of alpha-synuclein seeding activity
通过检测 α-突触核蛋白播种活性增强帕金森病和多系统萎缩的诊断
- 批准号:
9890542 - 财政年份:2020
- 资助金额:
$ 52.71万 - 项目类别:
Enhancing diagnosis of Parkinson's disease and multiple system atrophy via detection of alpha-synuclein seeding activity
通过检测 α-突触核蛋白播种活性增强帕金森病和多系统萎缩的诊断
- 批准号:
10618226 - 财政年份:2020
- 资助金额:
$ 52.71万 - 项目类别: