CAREER: Advancing Fair Data Mining via New Robust and Explainable Algorithms and Human-Centered Approaches
职业:通过新的稳健且可解释的算法和以人为本的方法推进公平数据挖掘
基本信息
- 批准号:2146091
- 负责人:
- 金额:$ 57.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Predictive discrimination is widespread in artificial intelligence (AI) applications that affect human life. Automated decisions can replicate, exaggerate social inequities, and even implement and legitimize new forms of discrimination. The fairness and equity of data mining and machine learning models are becoming a growing concern in many communities, but the constraints of sensitive information in data and the complexity of models bring critical challenges to building fair AI frameworks. This project focuses on undertaking fundamental research activities to advance fairness in data mining and machine learning, and to enable efficient human-machine interaction in human-centered and wellness-focused real-world problems. This project will result in algorithms and software that facilitate broader research of fair AI technologies in high-stake application areas, such as improving healthcare diversity. The project's impacts are easing humans' effort to build, adopt, and interact with fair models. Furthermore, this project will encourage underrepresented students into cutting edge computational research and contribute to graduate and undergraduate education in multidisciplinary areas.The research objective of this project is to create fair and explainable AI and human-in-the-loop control paradigm: designing a family of fair, explainable, and robust data mining algorithms with high expressive ability, faithful explanations, and rigorous theoretical foundations. From a data equity perspective, the investigator will design effective algorithms to achieve fair predictions while being able to protect sensitive information. From an algorithm perspective, the investigator will design novel explainable and robust models with rigorous theoretical guarantees on generalization ability and Pareto efficiency. From a human-machine interaction perspective, the project will promote human-in-the-loop interventions and integrate human feedback to repair incorrect or biased predictions. This research effort combines rigorous theoretical analysis with emerging application problems, and is applicable to addressing the grand challenges that society faces in building responsible data science.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在影响人类生活的人工智能(AI)应用中,预测性歧视是广泛的。自动化的决定可以复制,夸大社会不平等,甚至实施并使新形式的歧视合法化。在许多社区中,数据挖掘和机器学习模型的公平性和公平性正越来越关注,但是数据中敏感信息的限制和模型的复杂性为建立公平的AI框架带来了关键的挑战。该项目着重于开展基本的研究活动,以提高数据挖掘和机器学习的公平性,并在以人为中心和以健康为中心的现实世界中实现有效的人机相互作用。该项目将产生算法和软件,以促进对高风险应用领域的公平AI技术的更广泛研究,例如改善医疗保健多样性。该项目的影响正在减轻人类在建立,采用和与公平模型互动的努力。此外,该项目将鼓励代表性不足的学生进行最先进的计算研究,并为多学科领域的研究生和本科教育做出贡献。该项目的研究目标是创建公平,可解释的AI和人类在环境控制范式:设计公平,可解释的,可解释的,可解释的和强大的数据矿物的家族,并具有高表达能力,忠实地解释了高表达能力,并忠于高表达能力,并忠于忠实地说明效果,并忠于高表达能力。从数据公平的角度来看,研究人员将设计有效的算法以实现公平的预测,同时能够保护敏感信息。从算法的角度来看,研究人员将设计新颖的可解释且健壮的模型,并具有严格的理论保证,可确保概括能力和帕累托效率。从人机相互作用的角度来看,该项目将促进人类的干预措施,并整合人类的反馈以修复错误或偏见的预测。这项研究工作将严格的理论分析与新兴的应用问题相结合,适用于社会在建立负责任的数据科学方面面临的巨大挑战。该奖项反映了NSF的法定任务,并被认为值得通过基金会的知识分子优点和更广泛的影响来通过评估来进行支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Self-Supervised Fair Representation Learning without Demographics
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Junyi Chai;Xiaoqian Wang
- 通讯作者:Junyi Chai;Xiaoqian Wang
Fairness without Demographics through Knowledge Distillation
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Junyi Chai;T. Jang;Xiaoqian Wang
- 通讯作者:Junyi Chai;T. Jang;Xiaoqian Wang
Difficulty-based Sampling for Debiased Contrastive Representation Learning doi
用于无偏差对比表示学习的基于难度的采样 doi
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Jang, Taeuk;Wang, Xiaoqian
- 通讯作者:Wang, Xiaoqian
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaoqian Wang其他文献
A W-Shaped Self-Supervised Computational Ghost Imaging Restoration Method for Occluded Targets
一种W型遮挡目标自监督计算鬼成像恢复方法
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Yu Wang;Xiaoqian Wang;Chao Gao;Zhuo Yu;Hong Wang;Huan Zhao;Zhihai Yao - 通讯作者:
Zhihai Yao
Determining entire mean first-passage time for Cayley networks
确定凯莱网络的整个平均首次通过时间
- DOI:
10.1142/s0129183118500092 - 发表时间:
2018-02 - 期刊:
- 影响因子:1.9
- 作者:
Xiaoqian Wang;Meifeng Dai;Yufei Chen;Yue Zong;Yu Sun;Weiyi Su - 通讯作者:
Weiyi Su
Additional clinical bene ts of probiotics as an adjunctive therapy to nonsurgical periodontal treatment of periodontitis: a systematic review and meta-analysis
益生菌作为牙周炎非手术牙周治疗的辅助疗法的额外临床益处:系统评价和荟萃分析
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Huiqing Gou;Xiaoqian Wang - 通讯作者:
Xiaoqian Wang
The Diffuse Reduction of Spleen Density: An Indicator of Severe Acute Pancreatitis?
脾脏密度弥漫性降低:重症急性胰腺炎的一个指标?
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:4
- 作者:
Guangdong Shao;Yanmei zhou;Zengfu Song;Maitao Jiang;Xiaoqian Wang;Xiangren Jin;Bei Sun;Xuewei Bai - 通讯作者:
Xuewei Bai
Prediction of health behaviours of users of online weight control communities: the effects of social support, and social connectedness
在线体重控制社区用户健康行为的预测:社会支持和社会联系的影响
- DOI:
10.1504/ijwbc.2015.072136 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Chen Ling;Paul Branscum;Xiaoqian Wang - 通讯作者:
Xiaoqian Wang
Xiaoqian Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
果蝇幼虫前进运动发起的神经机制
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
果蝇幼虫前进运动发起的神经机制
- 批准号:32271041
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
机器人鸟“前进”运动控制神经信息传导通路及反馈研究
- 批准号:61903230
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
内蒙古中东部毛登-前进场早石炭世强过铝花岗岩带地球化学成因及其构造意义
- 批准号:41702054
- 批准年份:2017
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
搅拌摩擦焊接过程前进阻力周期脉动振荡行为及调控研究
- 批准号:51675248
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
Mayo Advancing Research Equity in ADRD Study in Jacksonville(MAREAS-Jax)
梅奥在杰克逊维尔推进 ADRD 研究中的研究公平性 (MAREAS-Jax)
- 批准号:
10729787 - 财政年份:2023
- 资助金额:
$ 57.64万 - 项目类别:
Advancing Health Equity Through Innovative Community Capacity Building, Data Science & Delivering Community-Centered Structural Interventions & Outcomes: Drexel's ComPASS Coordinating Center (C3)
通过创新的社区能力建设、数据科学促进健康公平
- 批准号:
10770882 - 财政年份:2023
- 资助金额:
$ 57.64万 - 项目类别:
FAI: Advancing Optimization for Threshold-Agnostic Fair AI Systems
FAI:推进与阈值无关的公平人工智能系统的优化
- 批准号:
2147253 - 财政年份:2022
- 资助金额:
$ 57.64万 - 项目类别:
Standard Grant
Multi-Consortia Coordinating Center (MC2 Center) for Cancer Biology: Building Interdisciplinary Scientific Communities, Coordinating Impactful Resource Sharing, and Advancing Cancer Research
癌症生物学多联盟协调中心(MC2 中心):建立跨学科科学社区、协调有影响力的资源共享并推进癌症研究
- 批准号:
10525124 - 财政年份:2022
- 资助金额:
$ 57.64万 - 项目类别: