MRI: Acquisition of a Next Generation Nanofabrication Dual-beam Platform

MRI:获取下一代纳米加工双光束平台

基本信息

  • 批准号:
    2117609
  • 负责人:
  • 金额:
    $ 69.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

Nontechnical description:This Major Research Instrumentation award supports the acquisition of a next-generation dual-beam nanofabrication platform for rapid prototyping of materials and devices that enable quantum computing, next-generation electronics, and the study of novel soft/hard matter systems. This instrument enhances intellectual output by empowering researchers to make new nanoscale devices and to modify materials, with greatly improved fidelity and reproducibility, which are needed to bridge the gap between fundamental science and engineering. The tool enables research through its novel ability to fabricate structures with various liquid metals and is paired with scanning electron microscopy for dynamic inspection of the fabrication process. Furthermore, the integration of an ultra-precise stage will provide wafer scale stitching-error-free continuous writing of large-device structures that was previously not possible. Also, the equipped nanomanipulator can be used to test circuits immediately after fabrication and adjust the patterning process accordingly. The instrument will be included in several ongoing activities, where K-12 students can experience scientific instrumentation first-hand. For example, because traditional approaches to bring new students into science have only been partially successful, the centerpiece of the educational outreach program targets young students and the public by stimulating interest in science through the visual arts using nanofabrication inspired by morpho butterflies. With the broad spectrum of materials and systems that can be studied with the instrument, the acquisition will impact research across departments at MIT and the New England region.Technical Description:Direct nanoscale fabrication methods have led to dramatic advancements in the development of new devices, modification of surfaces, and the integration of novel or dissimilar materials. Advances in focused ion beams (FIBs) formed from liquid metal alloy ion sources (LMAIS), in particular, have great expanded direct-write capacities, and can now be exploited for the nanofabrication of nanoplasmonics, fiber-tip optics, quantum devices, electron/x-ray optics. In contrast with Ga-only FIB instruments, the LMAIS provides Si, Ge, or Au beams, which can be used for milling of material with the smallest possible linewidth as well as implanting qubits at targeted locations without the need for masks or pre-processing. This patterning precision is enhanced by simultaneous field emission scanning electron microscopy imaging for in situ fabrication inspection, the inclusion of gas injection sources (Pt, C) for patterning and sample protection, a laser interferometer stage for ultra-precise positioning, wafer scale stitching-error-free continuous writing, a nanomanipulator, and electron beam lithography capabilities. This instrument will thus accelerate intellectual output by empowering researchers to make new, nanoscale devices and modify materials, with greatly improved fidelity and reproducibility, which are needed to bridge the gap between fundamental science and engineering. In terms of research accessibility, the microscopy will be managed by Characterization.nano, a shared experimental facility, which is part of the newly built MIT.nano center. This centrally located facility functions as a cross pollination hub and brings together expertise in nanofabrication, electron microscopy, teaching, and maintenance. This open access center serves local internal and external users, providing training and hands-on usage of the instruments, and is open to researchers across the nation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:这项重大研究仪器奖支持收购下一代双束纳米加工平台,用于材料和设备的快速原型制作,从而实现量子计算、下一代电子学以及新型软/硬物质系统的研究。该仪器通过使研究人员能够制造新的纳米级设备和改性材料来增强智力产出,并大大提高保真度和再现性,这是弥合基础科学和工程之间差距所必需的。该工具通过其用各种液态金属制造结构的新颖能力来实现研究,并与扫描电子显微镜配合使用,以动态检查制造过程。此外,超精密平台的集成将提供大型器件结构的晶圆级无拼接错误连续写入,这在以前是不可能的。此外,配备的纳米操纵器可用于在制造后立即测试电路并相应地调整图案化工艺。该仪器将被纳入多项正在进行的活动中,K-12 学生可以在这些活动中亲身体验科学仪器。例如,由于引导新生进入科学领域的传统方法只取得了部分成功,因此教育推广计划的核心目标是年轻学生和公众,通过使用受大闪蝶启发的纳米加工的视觉艺术来激发对科学的兴趣。该仪器可以研究广泛的材料和系统,此次收购将影响麻省理工学院和新英格兰地区跨部门的研究。技术描述:直接纳米级制造方法导致新设备开发取得巨大进步,表面改性以及新型或不同材料的集成。特别是由液态金属合金离子源 (LMAIS) 形成的聚焦离子束 (FIB) 的进步,具有极大扩展的直写能力,现在可用于纳米等离子体、光纤尖端光学、量子器件、电子器件的纳米制造。 /X射线光学。与纯 Ga FIB 仪器相比,LMAIS 提供 Si、Ge 或 Au 光束,可用于以尽可能最小的线宽铣削材料,以及在目标位置注入量子位,无需掩模或预处理。通过用于原位制造检查的同步场发射扫描电子显微镜成像、用于图案化和样品保护的气体注入源(Pt、C)、用于超精确定位的激光干涉仪台、晶圆级缝合,增强了这种图案化精度。无差错连续写入、纳米操纵器和电子束光刻功能。因此,该仪器将通过使研究人员能够制造新的纳米级设备和修改材料来加速智力产出,并大大提高保真度和再现性,这是弥合基础科学和工程之间差距所必需的。在研究可及性方面,显微镜将由共享实验设施 Characterization.nano 管理,该设施是新建的 MIT.nano 中心的一部分。 这个位于中心位置的设施充当异花授粉中心,汇集了纳米制造、电子显微镜、教学和维护方面的专业知识。这个开放访问中心为当地内部和外部用户提供服务,提供仪器的培训和实践使用,并向全国各地的研究人员开放。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力评估进行评估,被认为值得支持。优点和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James LeBeau其他文献

Promoting Mechanistic Understanding of Lithium Deposition and Solid‐Electrolyte Interphase (SEI) Formation Using Advanced Characterization and Simulation Methods: Recent Progress, Limitations, and Future Perspectives
使用先进的表征和模拟方法促进对锂沉积和固体电解质界面 (SEI) 形成的机理理解:最新进展、局限性和未来展望
  • DOI:
    10.1002/aenm.202200398
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    27.8
  • 作者:
    Yaolin Xu;Kang Dong;Yulin Jie;Philipp Adelhelm;Yawei Chen;Liang Xu;Peiping Yu;Junghwa Kim;Zdravko Kochovski;Zhilong Yu;Wanxia Li;James LeBeau;Yang Shao‐Horn;Ruiguo Cao;Shuhong Jiao;Tao Cheng;Ingo Manke;Yan Lu
  • 通讯作者:
    Yan Lu
Promoting Mechanistic Understanding of Lithium Deposition and Solid‐Electrolyte Interphase (SEI) Formation Using Advanced Characterization and Simulation Methods: Recent Progress, Limitations, and Future Perspectives
使用先进的表征和模拟方法促进对锂沉积和固体电解质界面 (SEI) 形成的机理理解:最新进展、局限性和未来展望
  • DOI:
    10.1002/aenm.202200398
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yaolin Xu;Kang Dong;Yulin Jie;Philipp Adelhelm;Yawei Chen;Liang Xu;Peiping Yu;Junghwa Kim;Zdravko Kochovski;Zhilong Yu;Wanxia Li;James LeBeau;Yang Shao‐Horn;Ruiguo Cao;Shuhong Jiao;Tao Cheng;Ingo Manke;Yan Lu
  • 通讯作者:
    Yan Lu

James LeBeau的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James LeBeau', 18)}}的其他基金

MRI: Acquisition of a Transmission Electron Microscope for In-situ Studies of Soft and Hard Matter
MRI:购买透射电子显微镜用于软物质和硬物质的原位研究
  • 批准号:
    1726294
  • 财政年份:
    2017
  • 资助金额:
    $ 69.9万
  • 项目类别:
    Standard Grant
CAREER: Understanding polar surfaces and interfaces using ultra-high resolution electron microscopy and spectroscopy
职业:使用超高分辨率电子显微镜和光谱学了解极性表面和界面
  • 批准号:
    1350273
  • 财政年份:
    2014
  • 资助金额:
    $ 69.9万
  • 项目类别:
    Continuing Grant

相似国自然基金

脚手架蛋白RanBP9通过调控细胞周期停滞和获得SASP介导应激性衰老促进AKI向CKD转化的作用及机制
  • 批准号:
    82300777
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
SIRT3-SOD2-mtROS信号轴调控骨骼肌自噬在脓毒症相关获得性肌无力中的作用及机制研究
  • 批准号:
    82360382
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
靶向DCLK1抑制Gas6/Axl通路激活CD8+T细胞治疗肺腺癌奥希替尼获得性耐药
  • 批准号:
    82303649
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于GPX4/Arg-1/TGF-β1轴探索三七总皂苷调控M2巨噬细胞铁死亡抑制获得性异位骨化的机制及量效关系研究
  • 批准号:
    82305273
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
KRAS(G12D)抑制剂在胰腺癌中获得性耐药的机制研究
  • 批准号:
    82373331
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Equipment: MRI: Track 1 Acquisition of a Digital Real-Time Simulator to Enhance Research and Student Research Training in Next-Generation Engineering and Computer Science
设备: MRI:轨道 1 采购数字实时模拟器,以加强下一代工程和计算机科学的研究和学生研究培训
  • 批准号:
    2320619
  • 财政年份:
    2023
  • 资助金额:
    $ 69.9万
  • 项目类别:
    Standard Grant
Research Infrastructure: MRI: Track #1 Acquisition of a Next-Generation X-ray Photoelectron Spectrometer for Materials Research, Education, and Outreach
研究基础设施:MRI:追踪
  • 批准号:
    2320848
  • 财政年份:
    2023
  • 资助金额:
    $ 69.9万
  • 项目类别:
    Standard Grant
Volumetric Real-Time MRI at 0.55 Tesla
0.55 特斯拉的体积实时 MRI
  • 批准号:
    10611241
  • 财政年份:
    2023
  • 资助金额:
    $ 69.9万
  • 项目类别:
Equipment: MRI: Track #1 Acquisition of a Physical Property Measurement System for Interdisciplinary Research and Education on Next Generation Materials
设备: MRI:轨道
  • 批准号:
    2320728
  • 财政年份:
    2023
  • 资助金额:
    $ 69.9万
  • 项目类别:
    Standard Grant
Robust, Contrast-Free Functional Renal MRI
稳健、无对比的功能性肾脏 MRI
  • 批准号:
    10578551
  • 财政年份:
    2023
  • 资助金额:
    $ 69.9万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了