CAREER: Tuning Complexity in Rare-Earth Transition Metal Oxides

职业:调整稀土过渡金属氧化物的复杂性

基本信息

  • 批准号:
    2145174
  • 负责人:
  • 金额:
    $ 70.13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-04-01 至 2027-03-31
  • 项目状态:
    未结题

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).NON-TECHNICAL SUMMARYMaterials called “complex oxides” are essential for technologies such as cell phone batteries, capacitors in all kinds of electronic devices, and catalysts that clean up industrial pollutants. These materials contain oxygen and two or more types of metal ions. This configuration allows for highly variable composition (which ions are present) and structure (how the ions are arranged), which can be harnessed to improve the technologies that rely on these families of compounds. With this CAREER award, Professor Katharine Page at the University of Tennessee Knoxville will study “High Entropy Oxides” (HEOs) that contain five or more ions of rare-earth elements or transition metals, which can provide an extremely vast array of compositions and structures. By using novel techniques to uncover and influence how the various HEO atoms interact, this research will reveal how to combine multiple desirable physical properties into a single material. These insights will lead to more efficient, more powerful, and more diverse fuel cells, catalysts, sensors, and electronics. Additionally, this project will produce a middle school workshop series that will promote careers in materials chemistry and related fields through hands-on activities that celebrate the creative exploration process of materials engineering and crystallography. Professors, graduate students, and undergrads involved in the research will teach and mentor participants in the workshop series at economically disadvantaged schools in rural East Tennessee and Appalachian communities.TECHNICAL SUMMARY With this CAREER award, Professor Katharine Page at the University of Tennessee Knoxville aims to uncover the rules for enabling hierarchical and tailored design in pyrochlore and layered perovskite-based rare earth transition metal complex oxide families featuring two to five atom types per lattice site. Relatively little is currently known about the classifications separating traditional complex oxide phases from the emerging class of High Entropy Oxides (materials involving five or more ions per lattice site), including the extent to which new design paradigms are needed to understand and control their physical properties. High entropy and kinetic reaction controls will be examined for their potential to produce single-phase materials and specific crystal-chemical conditions in the pyrochlore family, seeking to improve ionic conductivity at lower working temperature for potential applications in solid oxide fuel cells and catalysts. Similar approaches will seek to tune magnetic, electronic, and multiferroic responses in the layered perovskite family. Sophisticated scattering probes, theoretical tools, and multi-modal modeling methods will be combined to evaluate the impact of local to long-range structure traits on the electronic and magnetic properties of the respective series. The extent to which specific defects, distortions, and chemical short-range order may be achieved and tuned to impact the stability and respective properties of the structural classes will be determined. This fundamental materials chemistry approach will lead to the foundational insights necessary to design HEO materials with desired combinations of traits. Relationships governing the stability, local to global symmetry, and overall tunability in HEOs emerging from this work will impact the broader exploration of complex oxide chemistries unfolding across multiple disciplines and applications. Concurrently, this project will promote a new generation of scientists through outreach, teaching, and mentoring activities that celebrate the creative exploration process of materials chemistry and crystallography approaches as part of a workshop series for traditionally marginalized groups at economically disadvantaged middle schools in rural East Tennessee and Appalachian communities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项是根据2021年《美国救援计划法》的全部或部分资助(公法117-2)。名为“复杂氧化物”的非技术摘要对于诸如手机电池,各种电子设备的电容器以及清洁工业危害者的催化剂等技术都是必不可少的。这些材料含有氧气和两种或多种类型的金属离子。这种配置允许高度可变的组成(存在于离子)和结构(离子的排列方式),可以利用这些组合物来改善依赖这些化合物家族的技术。通过此职业奖,田纳西大学诺克斯维尔大学的Katharine Page教授将研究“高熵氧化物”(HEO),其中包含五个或更多离子的稀土元素或过渡金属,这些金属可以提供一系列非常庞大的构图和结构。通过使用新型技术来揭示和影响各种HEO原子的相互作用,这项研究将揭示如何将多种理想的物理特性结合到单个材料中。这些见解将导致更有效,更强大,更多样化的燃料电池,催化剂,传感器和电子产品。此外,该项目将制作一个中学研讨会系列,该系列将通过动手活动来促进材料化学和相关领域的职业,从而庆祝材料工程和晶体学的创造性探索过程。参与研究参与的教授,研究生和本科生将在田纳西州东部和阿巴拉契亚乡村的经济弱势学校的讲习班系列赛中教和指导参与者。田纳西大学的凯瑟琳·诺克斯维尔(Katharine of Tennessee Knoxville)的凯瑟琳(Katharine of)的技术摘要,田纳西大学的凯瑟琳(Katharine)教授旨在揭示层次的莱克尔(Universition of Tennessee),旨在揭示层次的规则,并揭示了层次的pecov and percov and perch perch and percon and percon and tailo py roperc and tarrocare and tarrocare and tarrocare the py,过渡金属复合物氧化物家族,每个晶格位点具有两到五种原子类型。目前,关于将传统的复杂氧化物阶段与新兴类别的高熵氧化物(每个晶格涉及五个或更多离子涉及五个或更多离子的材料)分开的分类相对鲜为人知,包括需要新设计范式来理解和控制其物理特性的程度。将检查高熵和动力学反应对照,以便在Pyrochlore家族中产生单相材料和特定的晶体化学条件的潜力,以寻求在较低的工作温度下提高离子电导率,以在较低的工作温度下用于潜在的氧化物燃料电池和催化剂中。类似的方法将寻求调整分层钙钛矿家族中的磁性,电子和多性反应。将组合复杂的散射问题,理论工具和多模式建模方法,以评估局部到远程结构特征对相应序列的电子和磁性特性的影响。可以确定并调谐以影响结构类别的稳定性和相对特性的特定缺陷,扭曲和化学短距离的程度。这种基本材料化学方法将导致设计具有所需特征组合的HEO材料所需的基本见解。管理稳定性,本地对全球对称性的关系以及从这项工作中出现的HEO的整体隧道性将影响更广泛的探索复杂的氧化物化学化学在多个学科和应用中展开。同时,该项目将通过外展,教学和心理活动来促进新一代的科学家,庆祝材料化学和晶体学方法的创造性探索过程,这是传统上经济上弱势群体中的弱势群体中的田纳西州和阿巴拉契亚社区的经济弱势中学的讲习班系列的一部分,这是通过Infortial of Intervantorial of Internation deem deem partunial of Deem deem partim of Deem deem deem teem teem的奖项。影响审查标准。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Local cation order and ferrimagnetism in compositionally complex spinel ferrites
  • DOI:
    10.1063/5.0123728
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Xin Wang;B. Musicó;C. Kons;Peter C. Metz;V. Keppens;D. Gilbert;Yuanpeng Zhang;K. Page
  • 通讯作者:
    Xin Wang;B. Musicó;C. Kons;Peter C. Metz;V. Keppens;D. Gilbert;Yuanpeng Zhang;K. Page
Phase Selectivity and Stability in Compositionally Complex Nano (nA1/n)Co2O4
  • DOI:
    10.1021/acs.chemmater.3c01647
  • 发表时间:
    2023-08
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Xin Wang;Peter C. Metz;E. Calì;P. R. Jothi;E. Lass;K. Page
  • 通讯作者:
    Xin Wang;Peter C. Metz;E. Calì;P. R. Jothi;E. Lass;K. Page
Local cation ordering in compositionally complex Ruddlesden–Popper n = 1 oxides
  • DOI:
    10.1063/5.0144766
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Bo Jiang;K. Pitike;D. Lin;Stephen C. Purdy;Xin Wang;Yafan Zhao;Yuanpeng Zhang;Peter C. Metz-
  • 通讯作者:
    Bo Jiang;K. Pitike;D. Lin;Stephen C. Purdy;Xin Wang;Yafan Zhao;Yuanpeng Zhang;Peter C. Metz-
Entropy-driven phase transitions in complex ceramic oxides
  • DOI:
    10.1103/physrevmaterials.6.090301
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    R. Spurling;E. Lass;Xin Wang;K. Page
  • 通讯作者:
    R. Spurling;E. Lass;Xin Wang;K. Page
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Katharine Page其他文献

Heterogeneous nucleation in Zr-Cu-Al-Ag metallic glasses triggered by quenched-in metastable crystals - A time-resolved neutron diffraction study
淬火亚稳态晶体触发 Zr-Cu-Al-Ag 金属玻璃中的异质成核 - 时间分辨中子衍射研究
  • DOI:
    10.1016/j.physb.2017.12.030
  • 发表时间:
    2018-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhenduo Wu;Si Lan;Xiaoya Wei;Daniel Olds;Katharine Page;Baolong Shen;Xun-Li Wang
  • 通讯作者:
    Xun-Li Wang
Empirical potential structure refinement of semi-crystalline polymer systems: polytetrafluoroethylene and polychlorotrifluoroethylene
半结晶聚合物体系的经验潜在结构细化:聚四氟乙烯和聚三氟氯乙烯
  • DOI:
    10.1088/0953-8984/25/45/454219
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alan K. Soper;Katharine Page;Anna Llobet
  • 通讯作者:
    Anna Llobet
Pair distribution function analysis applied to decahedral gold nanoparticles
应用于十面体金纳米粒子的对分布函数分析
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Heinz Nakotte;C. Silkwood;Katharine Page;Hsiu‐Wen Wang;Daniel Olds;Boris Kiefer;S. Manna;Dmitry Karpov;E. Fohtung;E. E. Fullerton
  • 通讯作者:
    E. E. Fullerton
Preparation and characterization of Pd<sub>2</sub>Sn nanoparticles
  • DOI:
    10.1016/j.materresbull.2007.05.010
  • 发表时间:
    2007-12-04
  • 期刊:
  • 影响因子:
  • 作者:
    Katharine Page;Christina S. Schade;Jinping Zhang;Peter J. Chupas;Karena W. Chapman;Thomas Proffen;Anthony K. Cheetham;Ram Seshadri
  • 通讯作者:
    Ram Seshadri

Katharine Page的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

浮置板轨道时变复杂振动的自学习快速调谐主动吸振机理研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
高坝泄流诱发闸门特殊振动形式的被动减振方法研究
  • 批准号:
    51909185
  • 批准年份:
    2019
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目
复杂油气藏宽频带免调谐核磁共振探测方法研究
  • 批准号:
    41704173
  • 批准年份:
    2017
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
高温超导滤波器中异步调谐复杂交叉耦合技术研究
  • 批准号:
    61601088
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
复杂环境下高精度SINS算法的时-频调谐设计方法与误差分析理论
  • 批准号:
    61603158
  • 批准年份:
    2016
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAS-SC: Tuning Hydrocarbon Products from Temperature-Gradient Thermolysis of Polyolefins and the Subsequent Upcycling to Functional Chemicals
CAS-SC:调整聚烯烃温度梯度热解的碳氢化合物产品以及随后升级为功能化学品
  • 批准号:
    2411680
  • 财政年份:
    2024
  • 资助金额:
    $ 70.13万
  • 项目类别:
    Standard Grant
Scalable and Automated Tuning of Spin-based Quantum Computer Architectures
基于自旋的量子计算机架构的可扩展和自动调整
  • 批准号:
    2887634
  • 财政年份:
    2024
  • 资助金额:
    $ 70.13万
  • 项目类别:
    Studentship
OAC Core: Cost-Adaptive Monitoring and Real-Time Tuning at Function-Level
OAC核心:功能级成本自适应监控和实时调优
  • 批准号:
    2402542
  • 财政年份:
    2024
  • 资助金额:
    $ 70.13万
  • 项目类别:
    Standard Grant
Tuning catalyst reaction environments towards photoreforming of wastewater
调整催化剂反应环境以实现废水的光重整
  • 批准号:
    DP240100687
  • 财政年份:
    2024
  • 资助金额:
    $ 70.13万
  • 项目类别:
    Discovery Projects
Tuning near-infrared photosynthesis
调节近红外光合作用
  • 批准号:
    BB/X015858/1
  • 财政年份:
    2024
  • 资助金额:
    $ 70.13万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了