CAREER: Towards Novel Twist Polaritonics in 2D Crystals and Devices

职业生涯:在二维晶体和器件中探索新颖的扭转极化子学

基本信息

  • 批准号:
    2145074
  • 负责人:
  • 金额:
    $ 56.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-01 至 2027-05-31
  • 项目状态:
    未结题

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). Nontechnical Description: Surface polaritons are a type of hybrid quantum particles resulting from light (photons) strongly coupled to interfacial electric dipoles. These highly confined nano-light waves have emergent properties that do not exist in the separate components alone, giving them the potential to realize novel circuitry for sensing, communications, and information processing. It is essential to trap light at the nanoscale to generate and manipulate these polaritonic waves. The investigators will image the flow of spatially confined nano-light in a class of engineered two-dimensional (2D) quantum devices with a unique atomic arrangement by stacking and twisting specific 2D layers. This research will uncover the novel characteristics of propagating nano-light waves that occur within these unique structures. The team expects to harness polaritonic waves to shed light on the fascinating new physics in 2D materials and devices and pave the way for new types of quantum nano-photonic technologies. The PI plans to integrate research with various education and outreach activities to mentor students at the K-12, undergraduate and graduate levels, especially those from underrepresented minority groups. The team will also participate in integrated outreach programs on 2D materials and nano-optics for the general public offered jointly by Florida State University and the National High Magnetic Field Laboratory. This project is jointly funded by the Electronic and Photonic Materials (EPM) and the Condensed Matter Physics (CMP) programs of the Division of Materials Research (DMR).Technical Description: The team aims to push the limits of light-matter interactions at unprecedented length scales and employ the emitted polaritonic waves to elucidate and control emergent topological states in two-dimensional (2D) quantum devices. The primary focus is on 2D van der Waals heterostructures and twistronics, a highly tunable topological platform that hosts a full suite of different polaritonic modes (plasmons, phonons, etc.) that can strongly couple with the incident photons far below the diffraction limit. State-of-the-art scanning near-field optical microscopy techniques will be carried out to directly launch and visualize polaritonic waves as they travel along 2D twisted layers down to the nanometer length scale at the desired long-wavelength photon excitations. In particular, real-space polaritonic nano-imaging grants access to the high photon momentum space that is far beyond what is attainable with conventional far-field optics. With this unique scanning near-field technique, the project team plans to 1) look for signatures of novel topological polaritonics and investigate their intrinsic characters in 2D quantum devices; 2) explore effective control and manipulation of topological polaritons through the moiré superlattice potential by tuning the relative twist angles and in situ electrical displacement fields; and 3) understand the new physics and exotic quantum phenomena at the infrared/terahertz low energy scales through multi-messenger nano-probe characterizations across multiple dimensions. The research is expected to deepen our understanding of how the topological polaritons can be generated and utilized to probe quantum solids, and harnessing long-lived dissipation-less flow of nano-light for future applications including quantum sensing and communication, topological lasers and quantum circuitry in 2D twisted systems and beyond.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项是根据2021年《美国救援计划法》(公法117-2)全部或部分资助的。非技术描述:表面极性子是一种由光(光子)与界面电偶极子耦合的一种杂化量子颗粒。这些高度狭窄的纳米光波具有仅在单独的组件中不存在的新兴特性,使他们有潜力实现新颖的传感,通信和信息处理的电路。在纳米级中捕获光是至关重要的,以产生和操纵这些极性波。研究人员将在一类工程的二维(2D)量子设备中对空间限制的纳米光的流动进行图像,并通过堆叠和扭曲特定的2D层,并具有独特的原子布置。这项研究将发现这些独特结构中发生的纳米光波的新特征。该团队希望利用偏光浪潮阐明2D材料和设备中引人入胜的新物理,并为新型的量子纳米光子技术铺平道路。 PI计划将研究与K-12,本科和研究生级别的精神学生,尤其是来自代表性不足的少数群体的各种教育和外展活动相结合。该团队还将为佛罗里达州立大学和国家高磁场实验室共同提供的公众共同提供有关2D材料和纳米风格的综合外展计划。该项目由电子和光子材料(EPM)以及材料研究司(DMR)的凝结物理物理(CMP)计划共同资助。技术描述:该团队旨在以未经前所未有的长度尺度上将光线相互作用的极限推向量规模,并雇用发射的极性浪潮和控制量的量子端口(两者)(两者)(两者)。主要的重点是2D van der waals异质结构和Twistonics,这是一个高度可调的拓扑平台,拥有一套完整的极性模式(等离子模式(等离子体,声子等),它们可以与远低于衍射极限的入射照片相结合。将进行最先进的扫描近场光学显微镜技术,以直接启动和可视化极化波,因为它们沿着二维扭曲的层向下传播至纳米长度尺度,并在所需的长波长光子兴奋下进行。尤其是,真实的空间偏振纳米成像可以访问高光子动量空间,这远远超出了传统的远场光学器件可实现的范围。通过这种独特的扫描近场技术,该项目团队计划1)寻找新型拓扑偏光学的签名,并在2D量子设备中调查其内在特征; 2)通过调整相对扭曲角度和原位电位移场,通过Moiré超晶格电位探索有效控制和操纵拓扑偏振子; 3)了解红外/Terahertz低能尺度上的新物理和外来量子现象通过多个维度跨多个维度的纳米探针特征而言。这项研究有望加深我们对如何产生和利用如何产生和利用量子固体的理解,并利用纳米光的长期耗散流动来实现未来的应用,包括量子敏感性和沟通,包括量子敏感性和沟通,拓扑激光器,拓扑激光和量子循环,在2D扭曲的系统中,该奖项通过2D扭曲的启用,并反映了nsf的构建,并反映了NSF的构建,并以此为基础。更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Guangxin Ni其他文献

Guangxin Ni的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

SHP2调控Treg向Th2-like Treg的可塑性转化在变应性鼻炎中的作用与机制研究
  • 批准号:
    82301281
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
EAST高极向比压运行模式下芯部与边界兼容机制的数值模拟研究
  • 批准号:
    12375228
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
CXCR5依赖的边缘区B细胞向滤泡树突状细胞呈递外泌体引发心脏移植排斥的研究
  • 批准号:
    82300460
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Dlx2通过调控Tspan13影响上颌突间充质干细胞骨向分化的机制研究
  • 批准号:
    82301008
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

PTSD and Autoimmune Disease: Towards Causal Effects, Risk Factors, and Mitigators
创伤后应激障碍 (PTSD) 和自身免疫性疾病:因果效应、危险因素和缓解措施
  • 批准号:
    10696671
  • 财政年份:
    2023
  • 资助金额:
    $ 56.96万
  • 项目类别:
Towards the understanding of how chaperones function and prevent amyloidogenic diseases
了解伴侣如何发挥作用并预防淀粉样蛋白形成疾病
  • 批准号:
    10734397
  • 财政年份:
    2023
  • 资助金额:
    $ 56.96万
  • 项目类别:
Towards equitable early identification of autism spectrum disorders in females
实现女性自闭症谱系障碍的公平早期识别
  • 批准号:
    10722011
  • 财政年份:
    2023
  • 资助金额:
    $ 56.96万
  • 项目类别:
Towards Precision Rehabilitation for Ventral Hernia
腹疝的精准康复
  • 批准号:
    10823864
  • 财政年份:
    2023
  • 资助金额:
    $ 56.96万
  • 项目类别:
Towards a Quantum-Mechanical Understanding of Redox Chemistry in Proteins
对蛋白质氧化还原化学的量子力学理解
  • 批准号:
    10606459
  • 财政年份:
    2023
  • 资助金额:
    $ 56.96万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了