Nonlinear and geometric effects in quantum condensed matter systems
量子凝聚态物质系统中的非线性和几何效应
基本信息
- 批准号:2116767
- 负责人:
- 金额:$ 39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
NONTECHNICAL SUMMARYThis award supports theoretical research and education using hydrodynamics and geometric methods to describe unusual collective behavior of quantum electronic systems and active matter. Active matter consists of assemblies of self-driven particles and the PI focuses on the coordinated behavior of their constituents or their collective behavior. This project is also focused on the coordinated or collective behavior of electrons that can result from their strong interactions in diverse materials or devices. The matter we observe around us consists of vast numbers of microscopic particles, atoms, molecules, ions, and electrons. Understanding the properties of the collections of a huge number of particles is crucial for technological progress. There are well-developed techniques of computing the properties of such systems when the constituent particles do not interact or interact only very weakly with each other. In this case, the properties of the system can be obtained by summing over one-particle motions. Examples include the properties of gases or electrons in good metals.When constituent particles interact strongly, the computation of collective properties of matter from microscopic properties of its constituent particles is much more challenging. For some kinds of matter, one of the powerful methods known is fluid dynamics. In fluid dynamics, the collective state of matter is characterized by fluid density, velocity, and temperature as they vary with time. Instead of considering microscopic particles, physicists can more easily solve equations describing their collective behavior. The equations include viscosity, compressibility, thermal conductivity, and other fluid properties as parameters. The challenge is to derive those properties from microscopic properties and expand the range of validity and the scope of fluid dynamics applications.The PI plans to apply fluid dynamics methods to quantum mechanical and classical systems with unusual characteristics such as the fluid of electrons in two dimensions in high magnetic field that gives rise to the quantum Hall effects, chiral materials, and chiral active matter. For these materials, the mirror image cannot be perfectly superimposed on the material or state of matter. Chiral active fluids, for example, are composed of self-spinning rotors that continuously inject energy and angular momentum at the microscopic scale. The collective fluid dynamics of these materials are qualitatively different from the descriptions of conventional hydrodynamics.Another part of the research involves the description of the limit shape phenomenon - the appearance of a most probable macroscopic state in random systems. This state is usually characterized by a well-defined boundary separating frozen and liquid spatial regions.Teaching the basics of math and physics and communicating the values of cutting-edge research in modern physics to high school students is an essential part of the project. PI will continue to participate in the enrichment program for children in Stony Brook, in the science sleepaway camp for students 13-16 years old in Stony Brook, and the summer camp for gifted high school students in Russia.TECHNICAL SUMMARYThis award supports theoretical research and education using hydrodynamic and geometric methods to study quantum and classical collective phenomena with a focus on electronic fluids and active matter. Recent decades brought a renewed interest in applications of topological and geometric methods in physics research. The overall trend of “geometrization of condensed matter physics” is characterized by the essential use of symmetries and effective descriptions of condensed matter systems. Those descriptions often have geometric meanings facilitating the use of the existent and development of new mathematics. The broad field of topological phases of matter, studies of collective behavior of active systems, research in chaotic and out-of-equilibrium systems are just a few fields strongly affected by this approach. The proposed research is in the field of theoretical condensed matter physics. It is unified using hydrodynamic and geometric methods in studies of quantum and classical collective phenomena. This project includes studies of anomalous fluids and odd transport coefficients, the interplay between topological degrees of freedom and effective boundary fluid dynamics, aspects of melting in Coulomb plasma in two dimensions, geometrical aspects of large fluctuations in low dimensional quantum fluids, and instanton effects on integrability breaking and chaotic behavior in one-dimensional quantum spin chains. It is expected that geometric ideas will be especially useful in understanding the above systems. The character of the proposed research provides an excellent environment for the comprehensive training of graduate students. The tools developed in the described projects can be used in very different fields of physics: quantum many-body theory, integrable models, nonlinear dynamics, classical integrability, fluid dynamics, nuclear physics, cosmology, etc. Part of the excitement of the proposed line of studies is due to the ability to apply findings across barriers, sometimes separating different areas of research. The obtained results can be verified by numerical simulations of correspondent systems and, ultimately, by comparison with experiments.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要该奖项支持使用流体动力学和几何方法来描述量子电子系统和活性物质的异常集体行为的理论研究和教育,活性物质由自驱动粒子的集合组成,PI 重点关注其成分或集体的协调行为。该项目还关注电子的协调或集体行为,这些行为是由电子在不同材料或设备中的强烈相互作用产生的。我们观察到的周围物质由大量的微观粒子、原子、分子、离子和电子组成。了解大量粒子集合的性质对于技术进步至关重要,当组成粒子之间不相互作用或相互作用非常弱时,有成熟的技术可以计算这些系统的性质。在这种情况下,系统的属性可以通过对单粒子运动进行强求和来获得。示例包括良好金属中气体或电子的属性。当组成粒子相互作用时,从其组成的微观属性计算物质的集体属性。粒子更具挑战性。对于某些物质,已知的强大方法之一是流体动力学,在流体动力学中,物质的集体状态以流体密度、速度和温度为特征,因为它们随时间变化,而不是考虑微观粒子。轻松求解描述其集体行为的方程。这些方程包括粘度、压缩性、导热性和其他流体特性作为参数。挑战在于从微观特性中导出这些特性,并扩大流体动力学应用的有效性范围。 PI计划应用液体具有不寻常特性的量子力学和经典系统的动力学方法,例如产生量子霍尔效应的二维电子流体、手性材料和手性活性物质。对于这些材料,镜像不能是。例如,完美叠加在材料或物质状态上的手性活性流体由在微观尺度上连续注入能量和角动量的自旋转转子组成,这些材料的集体流体动力学与描述的有本质上的不同。传统的研究的另一部分涉及极限形状现象的描述 - 随机系统中最可能的宏观状态的出现,这种状态通常以分隔冷冻和液体空间区域的明确边界为特征。数学和物理以及向高中生传达现代物理学前沿研究的价值观是该项目的重要组成部分,PI 将继续参加石溪儿童科学营的丰富项目。 13岁-16岁学生石溪分校以及俄罗斯天才高中生夏令营。技术摘要该奖项支持利用流体动力学和几何方法研究量子和经典集体现象的理论研究和教育,重点是电子流体和活性物质。人们对拓扑和几何方法在物理研究中的应用重新产生了兴趣,“凝聚态物理几何化”的总体趋势的特点是对称性的基本使用和凝聚态系统的有效描述。几何意义促进了新数学的存在和发展的广泛领域,活跃系统的集体行为的研究,混沌和不平衡系统的研究只是受此影响的几个领域。所提出的研究属于理论凝聚态物理领域,该项目统一使用流体动力学和几何方法来研究量子和经典集体现象。自由和有效边界流体动力学、二维库仑等离子体中的熔化方面、低维量子流体中大涨落的几何方面、以及一维量子自旋链中的可积破缺和混沌行为的瞬子效应是预期的几何思想。该研究的特点对于研究生的综合训练特别有用,所描述的项目中开发的工具可用于不同的物理学领域:量子多体理论。 ,可积模型,非线性动力学、经典可积性、流体动力学、核物理、宇宙学等。所提出的研究路线的令人兴奋的部分原因在于能够跨越障碍应用研究结果,有时可以验证不同研究领域所获得的结果。通过相应系统的数值模拟,并最终与实验进行比较。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Limit shape phase transitions: a merger of arctic circles
极限形状相变:北极圈的合并
- DOI:10.1088/1751-8121/ac79ad
- 发表时间:2022-07
- 期刊:
- 影响因子:0
- 作者:Pallister, James S;Gangardt, Dimitri M;Abanov, Alexander G
- 通讯作者:Abanov, Alexander G
Hydrodynamics of low-dimensional quantum systems
低维量子系统的流体动力学
- DOI:10.1088/1751-8121/acecc8
- 发表时间:2023-08
- 期刊:
- 影响因子:0
- 作者:Abanov, Alexander;Doyon, Benjamin;Dubail, Jérôme;Kamenev, Ale;Spohn, Herbert
- 通讯作者:Spohn, Herbert
Anomalies in fluid dynamics: flows in a chiral background via variational principle
流体动力学异常:通过变分原理在手性背景中流动
- DOI:10.1088/1751-8121/ac9202
- 发表时间:2022-09
- 期刊:
- 影响因子:0
- 作者:Abanov, A G;Wiegmann, P B
- 通讯作者:Wiegmann, P B
Slowly decaying zero mode in a weakly nonintegrable boundary impurity model
弱不可积边界杂质模型中缓慢衰减的零模式
- DOI:10.1103/physrevb.108.165143
- 发表时间:2023-10
- 期刊:
- 影响因子:3.7
- 作者:Yeh, Hsiu;Cardoso, Gabriel;Korneev, Leonid;Sels, Dries;Abanov, Alexander G.;Mitra, Aditi
- 通讯作者:Mitra, Aditi
Chiral anomaly in Euler fluid and Beltrami flow
欧拉流体和贝尔特拉米流中的手性异常
- DOI:10.1007/jhep06(2022)038
- 发表时间:2022-06
- 期刊:
- 影响因子:5.4
- 作者:Wiegmann, P. B.;Abanov, A. G.
- 通讯作者:Abanov, A. G.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Abanov其他文献
Alexander Abanov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Abanov', 18)}}的其他基金
Nonlinear and geometric effects in quantum condensed matter systems
量子凝聚态物质系统中的非线性和几何效应
- 批准号:
1606591 - 财政年份:2016
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
Workshop:Facets of Integrability: Random Patterns, Stochastic Processes, Hydrodynamics, Gauge Theories and Condensed Matter Systems-the Simons Ctr for Geometry&Physics 1/21-27/
研讨会:可积性的各个方面:随机模式、随机过程、流体动力学、规范理论和凝聚态系统-西蒙斯几何中心
- 批准号:
1310360 - 财政年份:2013
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Nonlinear effects in quantum condensed matter systems
量子凝聚态物质系统中的非线性效应
- 批准号:
1206790 - 财政年份:2012
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
Nonlinear Effects in Quantum Condensed Matter Systems
量子凝聚态系统中的非线性效应
- 批准号:
0906866 - 财政年份:2009
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
CAREER: Geometry and Interference in Strongly Correlated Systems
职业:强相关系统中的几何和干涉
- 批准号:
0348358 - 财政年份:2004
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
相似国自然基金
基于非共面磁矩上几何相位的自旋波操控
- 批准号:12374117
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
基于离散几何模型的高质量非结构曲面网格生成方法研究
- 批准号:12301489
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
凸体几何中Lp仿射等周问题的研究
- 批准号:12301073
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于隐式几何描述的梯度随机点阵结构多尺度建模与优化设计
- 批准号:12372200
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
离散物理系统的通用几何图学习理论方法
- 批准号:62376276
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
CAS: Collaborative Research: Separating Electronic and Geometric Effects in Compound Catalysts: Examining Unique Selectivities for Hydrogenolysis on Transition Metal Phosphides
CAS:合作研究:分离复合催化剂中的电子效应和几何效应:检验过渡金属磷化物氢解的独特选择性
- 批准号:
2409888 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
CAS: Collaborative Research: Separating Electronic and Geometric Effects in Compound Catalysts: Examining Unique Selectivities for Hydrogenolysis on Transition Metal Phosphides
CAS:合作研究:分离复合催化剂中的电子效应和几何效应:检验过渡金属磷化物氢解的独特选择性
- 批准号:
1954426 - 财政年份:2020
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
CAS: Collaborative Research: Separating Electronic and Geometric Effects in Compound Catalysts: Examining Unique Selectivities for Hydrogenolysis on Transition Metal Phosphides
CAS:合作研究:分离复合催化剂中的电子效应和几何效应:检验过渡金属磷化物氢解的独特选择性
- 批准号:
1954611 - 财政年份:2020
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
CAS: Collaborative Research: Separating Electronic and Geometric Effects in Compound Catalysts: Examining Unique Selectivities for Hydrogenolysis on Transition Metal Phosphides
CAS:合作研究:分离复合催化剂中的电子效应和几何效应:检验过渡金属磷化物氢解的独特选择性
- 批准号:
1954111 - 财政年份:2020
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Determination of post-shakedown quantities with the Simplified Theory of Plastic Zones including second-order geometric effects
使用塑性区简化理论(包括二阶几何效应)确定安定后量
- 批准号:
416907346 - 财政年份:2019
- 资助金额:
$ 39万 - 项目类别:
Research Grants