Collaborative Research: DMREF: Machine Learning-aided Discovery of Synthesizable, Active and Stable Heterogeneous Catalysts

合作研究:DMREF:机器学习辅助发现可合成、活性和稳定的多相催化剂

基本信息

  • 批准号:
    2116647
  • 负责人:
  • 金额:
    $ 43.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2023-01-31
  • 项目状态:
    已结题

项目摘要

Catalytic materials have long been used to improve the efficiency and product selectivity of many processes of vital importance to chemical manufacturing, petroleum refining, and pollution control. Given the complexity of catalytic reactions, and the need for the catalyst to operate under harsh conditions in many cases, considerable development effort – particularly from industry - has gone into the design of catalyst materials that can be readily synthesized, and that maintain stable performance for long time-on-stream. Academic research efforts, in contrast, have largely focused on theoretical, computational, and experimental identification of more active and/or lower-cost catalytic materials, but with little attention to synthesizability and stability. The project creates a new catalytic materials research framework that combines the search for more active materials with screening for synthesizability and stability under reaction conditions. The added complexity is addressed through the addition of powerful machine learning (ML) approaches that augment theoretical and computational tools to yield a more complete set of properties, or “descriptors,” associated with synthesizable, highly active, and stable catalytic materials. Ultimately, the goal is to package the various discovery tools in the form of an intuitive approach that delivers optimal results for catalysis practitioners. The project builds on the widely practiced descriptor approach to catalysis research, where a descriptor of catalytic activity (e.g., adsorption energy of an adsorbate) is computed using quantum chemical Density Functional Theory (DFT) calculations on various catalyst surfaces. Research efforts extend the current approaches by developing synthesizability, stability, and activity descriptors, using ML tools to rapidly screen through these descriptors, and collaborating with experimentalists in an iterative feedback loop to examine the accuracy of the predictions and to ensure the “catalysis practitioner-friendliness” of the combined methods. The approach will be developed in two case studies focusing on bimetallic catalysts for low temperature preferential CO oxidation in the presence of H2 (CO PROX) and partial oxidation of ethylene to ethylene oxide. The project will create a computer-aided workflow and open-source tools for predicting the synthesizability, activity, and stability of catalysts. By combining ML and DFT modeling with operando experimental characterization and testing, new structure-function relations will be identified for both reactions. In doing so, ML methods will advance beyond the prediction of activity for highly idealized systems to more realistic catalytic systems under operating conditions. Predicted materials structures and compositions will be validated against open-source high-fidelity experimental datasets in a feedback discovery loop that accelerates catalyst discovery. Beyond the technical component, the project will include outreach efforts focused on student professional development, broadened science participation, and informal science communication to help create a world-class scientific workforce. Cross-disciplinary training activities at the University of Michigan (U-M) and Wayne State University (WSU) will provide graduate and undergraduate students with a foundation to continue making scientific advances throughout their careers. A Data Science for Catalysis Training Program will enable undergraduates from WSU to visit U-M during the summer to learn the basics of data science and catalysis. Underrepresented students from Detroit schools, and their parents, will engage in science outreach events hosted by team members.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
鉴于催化反应的复杂性以及许多领域对催化剂在恶劣条件下运行的需要,催化材料长期以来一直用于提高对化学制造、石油精炼和污染控制至关重要的许多过程的效率和产品选择性。在这种情况下,大量的开发工作(尤其是工业界)已经投入到易于合成的催化剂材料的设计中,并且能够在长时间运行中保持稳定的性能,相比之下,学术研究工作主要集中在理论、计算和实验鉴定该项目创建了一个新的催化材料研究框架,将寻找更活性的材料与筛选复杂反应条件下的可合成性和稳定性结合起来。通过添加强大的机器学习(ML)方法来解决这一问题,这些方法增强了理论和计算工具,以产生与可合成、高活性和稳定的催化材料相关的更完整的属性或“描述符”。目标是以直观方法的形式打包各种发现工具,为催化从业者提供最佳结果。该项目建立在广泛实践的催化研究描述符方法的基础上,其中催化活性的描述符(例如,催化剂的吸附能)。研究工作通过开发可合成性、稳定性和活性描述符来扩展当前的方法。机器学习工具可以快速筛选这些描述符,并在迭代反馈循环中与实验人员合作,以检查预测的准确性并确保组合方法的“催化实践者友好性”。该方法将在两个重点案例研究中开发。该项目将创建一个计算机辅助工作流程和开源项目,用于在 H2 存在下进行低温优先 CO 氧化(CO PROX)和乙烯部分氧化为环氧乙烷的双金属催化剂。通过将 ML 和 DFT 建模与操作实验表征和测试相结合,将确定这两种反应的新结构-功能关系,从而预测催化剂的合成性、活性和稳定性。高度理想化系统的活性到更现实的催化系统在操作条件下的预测材料结构和成分将在反馈发现循环中根据开源高保真实验数据集进行验证,从而加速催化剂的发现。项目将包括侧重于学生专业发展、扩大科学参与和非正式科学交流的外展工作,以帮助创建世界一流的科学劳动力 密歇根大学 (U-M) 和韦恩州立大学 (WSU) 将开展跨学科培训活动。为研究生和本科生在整个职业生涯中继续取得科学进步奠定基础。 催化数据科学培训计划将使华盛顿州立大学的本科生能够在夏季访问密歇根大学,学习来自底特律学校的数据科学和催化基础知识。 , 和他们的父母将参与由团队成员主办的科学推广活动。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eranda Nikolla其他文献

Reactivity of Pd–MO2encapsulated catalytic systems for CO oxidation
  • DOI:
    10.1039/d1cy01916c
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Laura Paz Herrera;Lucas Freitas de Lima e Freitas;Jiyun Hong;Adam S. Hoffman;Simon R. Bare;Eranda Nikolla;J. Will Medlin
  • 通讯作者:
    J. Will Medlin
Effects of catalyst morphology on oxygen defects at Ni–CeO2interfaces for CO2methanation
  • DOI:
    10.1039/d4cy00173g
  • 发表时间:
    2024-05
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Samiha Bhat;Miguel Sepúlveda-Pagán;Justin Borrero-Negrón;Jesús E. Meléndez-Gil;Eranda Nikolla;Yomaira J. Pagán-Torres
  • 通讯作者:
    Yomaira J. Pagán-Torres

Eranda Nikolla的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eranda Nikolla', 18)}}的其他基金

Collaborative Research: Understanding the Role of Surface Bound Ligands on Metals in H2O2 Direct Synthesis
合作研究:了解金属表面结合配体在 H2O2 直接合成中的作用
  • 批准号:
    2349883
  • 财政年份:
    2024
  • 资助金额:
    $ 43.25万
  • 项目类别:
    Continuing Grant
Conference: Support for U.S. Participants at the 18th International Congress on Catalysis
会议:为第 18 届国际催化大会美国与会者提供支持
  • 批准号:
    2419211
  • 财政年份:
    2024
  • 资助金额:
    $ 43.25万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding the discharge mechanism at solid/aprotic interfaces of Na-O2 battery cathodes to enhance cell cyclability
合作研究:了解Na-O2电池阴极固体/非质子界面的放电机制,以增强电池的循环性能
  • 批准号:
    2342024
  • 财政年份:
    2024
  • 资助金额:
    $ 43.25万
  • 项目类别:
    Standard Grant
Collaborative Research: Engineering Selectivity by Catalyst Architecture Control
合作研究:通过催化剂结构控制实现工程选择性
  • 批准号:
    2321164
  • 财政年份:
    2023
  • 资助金额:
    $ 43.25万
  • 项目类别:
    Standard Grant
Collaborative Research: Elucidating the Roles of Electric Fields Within Mixed Ionic and Electronic Conducting Oxides Under Electrochemical Reducing Conditions
合作研究:阐明电化学还原条件下混合离子和电子导电氧化物中电场的作用
  • 批准号:
    2333166
  • 财政年份:
    2023
  • 资助金额:
    $ 43.25万
  • 项目类别:
    Continuing Grant
Collaborative Research: Controlling the properties of oxide-encapsulated metals for interfacial catalysis
合作研究:控制氧化物封装金属的界面催化性能
  • 批准号:
    2311986
  • 财政年份:
    2023
  • 资助金额:
    $ 43.25万
  • 项目类别:
    Standard Grant
Collaborative Research: Engineering the Chemistry at Solid-Solid Interfaces of Li-O2 Battery Cathodes
合作研究:锂氧电池正极固-固界面化学工程
  • 批准号:
    2312634
  • 财政年份:
    2022
  • 资助金额:
    $ 43.25万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Machine Learning-aided Discovery of Synthesizable, Active and Stable Heterogeneous Catalysts
合作研究:DMREF:机器学习辅助发现可合成、活性和稳定的多相催化剂
  • 批准号:
    2306125
  • 财政年份:
    2022
  • 资助金额:
    $ 43.25万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Machine Learning-aided Discovery of Synthesizable, Active and Stable Heterogeneous Catalysts
合作研究:DMREF:机器学习辅助发现可合成、活性和稳定的多相催化剂
  • 批准号:
    2306125
  • 财政年份:
    2022
  • 资助金额:
    $ 43.25万
  • 项目类别:
    Standard Grant
Collaborative Research: Engineering the Chemistry at Solid-Solid Interfaces of Li-O2 Battery Cathodes
合作研究:锂氧气电池正极固-固界面化学工程
  • 批准号:
    1935581
  • 财政年份:
    2020
  • 资助金额:
    $ 43.25万
  • 项目类别:
    Standard Grant

相似国自然基金

基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
  • 批准号:
    82304250
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肠道普拉梭菌代谢物丁酸抑制心室肌铁死亡改善老龄性心功能不全的机制研究
  • 批准号:
    82300430
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
  • 批准号:
    72302067
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向图像目标检测的新型弱监督学习方法研究
  • 批准号:
    62371157
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向开放域对话系统信息获取的准确性研究
  • 批准号:
    62376067
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
  • 批准号:
    2411603
  • 财政年份:
    2024
  • 资助金额:
    $ 43.25万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2409552
  • 财政年份:
    2024
  • 资助金额:
    $ 43.25万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 43.25万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: High-Throughput Screening of Electrolytes for the Next Generation of Rechargeable Batteries
合作研究:DMREF:下一代可充电电池电解质的高通量筛选
  • 批准号:
    2323118
  • 财政年份:
    2023
  • 资助金额:
    $ 43.25万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: De Novo Proteins as Junctions in Polymer Networks
合作研究:DMREF:De Novo 蛋白质作为聚合物网络中的连接点
  • 批准号:
    2323316
  • 财政年份:
    2023
  • 资助金额:
    $ 43.25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了