CAREER: Developing Techniques for Atom-Based Gravitational Wave Detection and Dark Matter Searches with a Multiplexed Optical Lattice Clock
职业:利用多路复用光学晶格钟开发基于原子的引力波探测和暗物质搜索技术
基本信息
- 批准号:2143870
- 负责人:
- 金额:$ 80.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). General audience abstract:Optical atomic clocks are now the most precise and accurate tabletop measurement devices ever constructed by humankind, offering sensitivity to new and exotic physics. The PI has recently developed a new kind of atomic clock apparatus and has used it to demonstrate a comparison between two optical clocks at a precision below one part in 10^19. To give a sense of scale, this corresponds to resolving a difference in the rate the two clocks tick at that would result in them disagreeing with each other by only 1 second after 300 billion years. The PI and a graduate student will use this new apparatus to develop and test ways to use optical atomic clocks to search for dark matter and to detect gravitational waves. This project therefore has the potential to result in new tools for studying the universe through gravitational wave astronomy, and new ways to search for answers to one of the biggest mysteries in physics, the nature of dark matter. The PI will integrate these research topics into new demos and hands-on activities designed to introduce K-12 students to modern physics concepts. Students will engage with these activities at live shows and interactive events as part of the University of Wisconsin “Wonders of Physics” outreach program, with an emphasis on reaching rural communities and Native American reservations in Wisconsin. This project will thereby strengthen public support for modern physics research and help students develop intuition for atomic technologies and their applications. Technical audience abstract:This research project aims to explore and develop emerging applications of optical atomic clocks. The PI has recently demonstrated a first-of-its-kind “multiplexed" optical lattice clock apparatus that enables differential clock comparisons between two or more spatially resolved ensembles of strontium atoms within the same vacuum chamber. These differential measurements eliminate the detrimental effects of clock laser noise and common mode environmental fluctuations, pushing the limits of achievable clock stability and atom-atom coherence. Record differential clock stabilities and fractional frequency precision have now been demonstrated in this apparatus, with a clear path to further gains in performance. The PI and collaborators will use this multiplexed optical lattice clock to develop and demonstrate novel measurement sequences and data analysis techniques for future gravitational wave detection with space-based optical lattice clocks, including the blind injection of simulated gravitational wave signals at realistic strengths. The PI and collaborators will also use the multiplexed optical lattice clock to search for foggy dark matter in previously unexplored regions of parameter space, and to develop new techniques to search for other forms of dark matter. The PI will work with collaborators to develop interactive and engaging demos and inquiry-based activities to introduce K-12 students to modern physics concepts, including the basic principles of atomic clocks and their applications, and will assess their effectiveness using surveys.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项是根据2021年《美国救援计划法》(公法117-2)全部或部分资助的。一般受众摘要:光原子时钟现在是人类构建的最精确,最准确的桌面测量设备,对新的和异国的物理学提供了敏感性。 PI最近开发了一种新型的原子钟设备,并用它在10^19中以低于一个零件的精度来证明了两个光学时钟之间的比较。为了给人一种规模的感觉,这对应于解决两个时钟滴答的速率的差异,这将导致它们在3000亿年后仅相互同意1秒钟。 PI和研究生将使用该新设备来开发和测试使用光原子时钟来寻找暗物质并检测引力波的方法。因此,该项目有可能通过引力波天文学来研究宇宙的新工具,以及寻找对物理学最大的奥秘之一的答案,即暗物质的本质。 PI将将这些研究主题整合到旨在将K-12学生引入现代物理概念的新演示和动手活动中。作为威斯康星大学“物理学”外展计划的一部分,学生将在现场表演和互动活动中参与这些活动,并着重于在威斯康星州触及农村社区和美国原住民保留地。该项目将加强公众对现代物理研究的支持,并帮助学生发展原子技术及其应用的直觉。技术受众摘要:该研究项目旨在探索和开发光原子时钟的新兴应用。 PI最近展示了一个首先的“多路复用”光学晶格时钟设备,该设备可以在同一真空室内的两个或多个空间分辨出的两个或多个空间分辨的跨原子合并之间进行差异时钟比较。这些差分测量消除了时钟激光噪声和共同模式环境波动的有害影响,从而突出了可实现的时钟稳定性和原子原子相干性的极限。现在已经在该设备中证明了记录差分时钟稳定性和分数频率精度,并具有明确的性能进一步提高的途径。 PI和合作者将使用此多重光学晶格时钟来开发和演示新的测量序列和数据分析技术,用于使用基于空间的光学晶格时钟,包括在现实优势下使用基于空间的光学晶格时钟,包括模拟重力波信号的盲注。 PI和合作者还将使用多路复用的光学晶格时钟来搜索以前意外的参数空间区域中的有雾的暗物质,并开发新技术以搜索其他形式的暗物质。 The PI will work with collaborators to develop interactive and engaging demos and inquiry-based activities to introduce K-12 students to modern physics concepts, including the basic principles of atomic clocks and their applications, and will assess their effectiveness using surveys.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's Intellectual merit and broader impacts review criteria.
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optical atomic clock aboard an Earth-orbiting space station (OACESS): enhancing searches for physics beyond the standard model in space
地球轨道空间站(OACESS)上的光学原子钟:加强对太空标准模型之外的物理学的搜索
- DOI:10.1088/2058-9565/ac9f2b
- 发表时间:2022
- 期刊:
- 影响因子:6.7
- 作者:Schkolnik, Vladimir;Budker, Dmitry;Fartmann, Oliver;Flambaum, Victor;Hollberg, Leo;Kalaydzhyan, Tigran;Kolkowitz, Shimon;Krutzik, Markus;Ludlow, Andrew;Newbury, Nathan
- 通讯作者:Newbury, Nathan
Reducing the Instability of an Optical Lattice Clock Using Multiple Atomic Ensembles
- DOI:10.1103/physrevx.14.011006
- 发表时间:2023-05
- 期刊:
- 影响因子:12.5
- 作者:Xin Zheng;J. Dolde;S. Kolkowitz
- 通讯作者:Xin Zheng;J. Dolde;S. Kolkowitz
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shimon Kolkowitz其他文献
Shimon Kolkowitz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
升级公共交通导向发展模式(TOD2)--应对气候中和的公共空间与交通枢纽设计方法与技术
- 批准号:72361137008
- 批准年份:2023
- 资助金额:200 万元
- 项目类别:国际(地区)合作与交流项目
发展μRIC-seq新技术解析lncRNA在小鼠早期胚胎发育中的功能机制
- 批准号:32370605
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
知识产权交易、技术流动与区域协同发展——基于网络分析的视角
- 批准号:72303066
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
中国牧区绿色低碳高质量发展的实现机制研究——基于技术和政策双轮驱动视角
- 批准号:72373059
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
技术与制度时空协同演化对区域新兴产业形成的影响机制研究
- 批准号:42301203
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Pacemakers of Cholinergic Wave Activity in the Developing Retina
视网膜发育中胆碱能波活动的起搏器
- 批准号:
10653330 - 财政年份:2023
- 资助金额:
$ 80.04万 - 项目类别:
Developing a Novel Clinical Care Model for Chronic Patellar Tendinopathy Utilizing Whole Person Healthcare
利用全人医疗保健开发慢性髌腱病的新型临床护理模式
- 批准号:
10739428 - 财政年份:2023
- 资助金额:
$ 80.04万 - 项目类别:
Developing and testing a multicomponent breathwork intervention for people with chronic pain
为慢性疼痛患者开发和测试多成分呼吸干预
- 批准号:
10663651 - 财政年份:2023
- 资助金额:
$ 80.04万 - 项目类别:
Developing and testing a multi-component intervention to improve Perinatal Mental Health
开发和测试多成分干预措施以改善围产期心理健康
- 批准号:
10723985 - 财政年份:2023
- 资助金额:
$ 80.04万 - 项目类别:
Improving the design and statistical analysis of cluster-randomized trials on tropical infectious diseases
改进热带传染病整群随机试验的设计和统计分析
- 批准号:
10570440 - 财政年份:2023
- 资助金额:
$ 80.04万 - 项目类别: