CAREER: Peptide stereocomplexes as dynamic junctions in polymeric biomaterials

职业:肽立体复合物作为聚合物生物材料中的动态连接

基本信息

  • 批准号:
    2143647
  • 负责人:
  • 金额:
    $ 56.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-01 至 2027-05-31
  • 项目状态:
    未结题

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).Non-technical Abstract:Developing materials that mimic the mechanical, chemical, and biological properties of natural tissue is important for advancing national health infrastructure. Such materials support the growth and delivery of therapeutic cells for repair of damaged tissue and enable researchers to study disease progression for identification and evaluation of new treatment approaches. Research in chemistry, materials science, biology, and engineering has produced a range of tunable tissue-mimicking materials and associated fabrication methods. While these biomaterials capture various aspects of native tissue, there remain compelling opportunities to improve both the production processes and materials properties to comprehensively capture the complex, highly functional features of native tissue in an accessible, scalable manner. This project will employ advanced synthetic and characterization techniques to develop new ways to prepare and tune the properties of water-swollen, tissue-mimetic materials composed of synthetic polymers and protein fragments called peptides. To inspire and guide a diverse cohort of students towards rewarding careers at the forefront of biomaterials research and education, this project involves the design, implementation, and dissemination of structured early-stage undergraduate research and educational experiences. Technical Abstract:To advance the ability of biomaterials to recapitulate the complex, highly functional characteristics of native tissue, it is important to develop ways to tune materials properties in an accessible, scalable manner. The goal of this project is to invoke stereochemistry-driven interactions to advance the manufacturing, control, and function of next-generation biomaterials. Stereochemistry-driven complexation, or ‘stereocomplexation’ of macromolecules produces marked changes in stability and thermomechanical properties of materials, yet there is limited understanding about the molecular features driving stereocomplexation and how complex strength impacts the properties of stereocomplexed materials. Since peptide synthesis enables routine generation of peptides with exquisite control of sequence and stereochemistry, peptides with complementary stereochemistry provide an ideal materials platform for answering these questions. The objectives of this project are to (1) determine how peptide molecular features (e.g., length, charge, and hydrophobicity) impact stereocomplexation; and (2) connect molecular-scale features of peptide stereocomplexes to the bulk properties (e.g., stiffness, viscoelasticity, and stability) of polymeric hydrogels cross-linked with peptide stereocomplexes. Establishing design rules for peptide stereocomplexation and determining the roles of these dynamic complexes in modulating biomaterials properties represent critical steps to advancing stereochemistry as a design parameter to control materials properties. Complementing and enriching the research objectives, educational objectives include structuring the early stages of undergraduate research to recruit and provide engaging experiences that empower a diverse group of biomaterials researchers. A research-based course series bridging multiple institutions will guide students in building core competencies and networks to propel their future careers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项的全部或部分资金根据《2021 年美国救援计划法案》(公法 117-2)提供。 非技术摘要:开发模仿自然组织机械、化学和生物特性的材料对于推进国家进步非常重要此类材料支持治疗细胞的生长和输送以修复受损组织,并使研究人员能够研究疾病进展以识别和评估新的治疗方法。化学、材料科学、生物学和工程学方面的研究已经产生了一系列。可调的虽然这些生物材料捕获了天然组织的各个方面,但仍然存在着改进生产工艺和材料特性的巨大机会,以便以可访问、可扩展的方式全面捕获天然组织的复杂、高功能特征。该项目将采用先进的合成和表征技术来开发新方法来制备和调整由合成聚合物和称为肽的蛋白质片段组成的水溶胀组织模拟材料的特性,以激励和引导不同的学生群体获得奖励。该项目涉及生物材料研究和教育前沿的职业,涉及结构化早期本科研究和教育经验的设计、实施和传播技术摘要:提高生物材料重现本土复杂、高功能特征的能力。对于组织而言,开发以可访问、可扩展的方式调整材料特性的方法非常重要,该项目的目标是调用立体化学驱动的相互作用来推进下一代生物材料的制造、控制和功能。立体化学驱动的络合或大分子的“立体络合”会导致材料的稳定性和热机械性能发生显着变化,但由于肽合成能够常规生成,因此对驱动立体络合的分子特征以及络合强度如何影响立体络合材料的性能了解有限。具有互补立体化学的肽为回答这些问题提供了理想的材料平台,该项目的目标是(1)确定。肽分子特征(例如,长度、电荷和疏水性)如何影响立体复合物;(2)将肽立体复合物的分子尺度特征与交联的聚合水凝胶的本体特性(例如,刚度、粘弹性和稳定性)联系起来;建立肽立体复合物的设计规则并确定这些动态复合物在调节生物材料特性中的作用是推进的关键步骤。立体化学作为控制材料特性的设计参数,教育目标包括构建本科生研究的早期阶段,以招募和提供吸引人的经验,为不同的生物材料研究人员群体提供能力。机构将指导学生建立核心能力和网络,以推动他们未来的职业生涯。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rachel Letteri其他文献

Rachel Letteri的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rachel Letteri', 18)}}的其他基金

EAPSI: Stimuli-responsive capsules from polymer-covered gold nanorods
EAPSI:由聚合物覆盖的金纳米棒制成的刺激响应胶囊
  • 批准号:
    1414688
  • 财政年份:
    2014
  • 资助金额:
    $ 56.4万
  • 项目类别:
    Fellowship Award

相似国自然基金

嵌合肽-DNA酶:构建、性质及应用研究
  • 批准号:
    22374070
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
噬菌体展示噻唑肽库的构建及基于TIGIT蛋白筛选噻唑类的多肽活性分子
  • 批准号:
    22307149
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
茯砖茶发花过程影响冠突散囊菌合成异戊烯基环二肽的跨界化学通讯分子研究
  • 批准号:
    32372313
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
生长激素释放肽驱动山羊瘤胃运动功能健全的分子机理及其调控
  • 批准号:
    32372914
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
发酵后熟期干腌火腿中浓厚味γ-谷氨酰二肽形成途径解析
  • 批准号:
    32302114
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Branched Amphiphilic Peptide Capsules (BAPCs) for the delivery of lethal dsRNA into invasive organisms
事业:分支两亲肽胶囊 (BAPC) 用于将致命的 dsRNA 传递到入侵生物体中
  • 批准号:
    2340070
  • 财政年份:
    2024
  • 资助金额:
    $ 56.4万
  • 项目类别:
    Continuing Grant
Development of programmable nanomachines towards the enzymatic synthesis of peptide oligonucleotide conjugates
开发用于肽寡核苷酸缀合物酶促合成的可编程纳米机器
  • 批准号:
    EP/X019624/1
  • 财政年份:
    2024
  • 资助金额:
    $ 56.4万
  • 项目类别:
    Fellowship
Role of intestinal serotonin transporter in post traumatic stress disorder
肠道血清素转运蛋白在创伤后应激障碍中的作用
  • 批准号:
    10590033
  • 财政年份:
    2024
  • 资助金额:
    $ 56.4万
  • 项目类别:
Examining the Function of a Novel Protein in the Cardiac Junctional Membrane Complex
检查心脏连接膜复合体中新型蛋白质的功能
  • 批准号:
    10749672
  • 财政年份:
    2024
  • 资助金额:
    $ 56.4万
  • 项目类别:
Metallo-Peptides: Arming Cyclic Peptide Antibiotics with New Weapons to Combat Antimicrobial Resistance
金属肽:用新武器武装环肽抗生素以对抗抗菌素耐药性
  • 批准号:
    EP/Z533026/1
  • 财政年份:
    2024
  • 资助金额:
    $ 56.4万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了