CAREER: Towards a Communication Foundation for Distributed and Decentralized Machine Learning
职业:为分布式和去中心化机器学习建立通信基础
基本信息
- 批准号:2143559
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
With the emerging paradigm shift towards moving the data collection and machine learning (ML) model training to the edge, distributed and decentralized ML has become increasingly critical to empowering many applications, such as autonomous driving, recommender systems, and Internet of Things (IoT). This trend imposes formidable challenges on the underlying communication design and catalyzes its evolution from connecting people and connecting things to connecting intelligence. This CAREER project develops fundamental communication technologies to enable distributed and decentralized ML in next-generation wireless systems. It transforms wireless communications from pure data transfer to intelligence transfer, building a synergy between communications and ML in a closely integrated fashion. In partnership with industry, results enabled by this project can be prototyped and integrated into real systems, potentially impacting 6G standardization and other future communication systems. The cross disciplinary nature of this project naturally translates into case studies and new development in a number of undergraduate and graduate level courses, by integrating ML and AI to the curriculum of communications and networking. The education and outreach activities will collectively promote a common thread of providing the best opportunities for diverse groups of bright young minds to develop into future scientists and engineers.This project aims at developing the theoretical foundation and novel communication algorithms for distributed and decentralized ML, thereby catalyzing a paradigm shift of wireless communications towards connecting intelligence. Towards this end, this project will develop a novel random orthogonalization principle that tightly integrates physical layer communications with ML. Additionally, the research will study the impact of fading and noisy channels on the performance of ML, and design communication methods to improve the accuracy and convergence of the ML tasks. Finally, a novel adaptive communication method for distributed and decentralized multi-armed bandits will be investigated, where coding and interleaving designs for online learning with adversarial communications will be studied. The proposed research promotes the fundamental understanding of the synergy between distributed and decentralized ML and communications, and will have broad applications beyond the specific problems studied in this project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着新兴范式转向将数据收集和机器学习(ML)模型培训升级到边缘,分布式和分散的ML对于增强许多应用程序的能力越来越重要,例如自动驾驶,推荐系统和物联网(IoT)(IoT) 。这一趋势对基础沟通设计构成了巨大的挑战,并促进了其从连接人员和将事物连接到连接智能的发展。该职业项目开发了基本的通信技术,以在下一代无线系统中启用分布式和分散的ML。它将无线通信从纯数据传输转变为智能传输,以紧密整合的方式在通信和ML之间建立协同作用。与行业合作,可以将该项目启用的结果原型并集成到实际系统中,从而可能影响6G标准化和其他未来的通信系统。该项目的跨学科性质自然地转化为案例研究和许多本科和研究生级课程的新发展,通过将ML和AI集成到通信和网络课程中。教育和宣传活动将共同促进一个共同的线索,为各种聪明的年轻人群体提供最佳机会,以发展为未来的科学家和工程师。该项目旨在为分布式和分散的ML开发理论基础和新颖的交流算法催化无线通信向连接智能的范式转移。为此,该项目将开发出一种新颖的随机正交原理,该原理将物理层与ML紧密整合在一起。此外,该研究将研究褪色和嘈杂渠道对ML性能的影响,以及设计沟通方法,以提高ML任务的准确性和收敛性。最后,将研究一种用于分布式和分散的多军匪徒的新型自适应通信方法,其中将研究用于在线学习的编码和交错设计,并研究对抗性通信。拟议的研究促进了对分布式和分散的ML和通信之间协同作用的基本理解,并将在本项目研究中提出的广泛应用。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的评估来支持的。智力优点和更广泛的影响审查标准。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Near-optimal Conservative Exploration in Reinforcement Learning under Episode-wise Constraints
- DOI:10.48550/arxiv.2306.06265
- 发表时间:2023-06
- 期刊:
- 影响因子:2.4
- 作者:Donghao Li;Ruiquan Huang;Cong Shen;Jing Yang
- 通讯作者:Donghao Li;Ruiquan Huang;Cong Shen;Jing Yang
Nearly Minimax Optimal Offline Reinforcement Learning with Linear Function Approximation: Single-Agent MDP and Markov Game
- DOI:10.48550/arxiv.2205.15512
- 发表时间:2022-05
- 期刊:
- 影响因子:0
- 作者:Wei Xiong;Han Zhong;Chengshuai Shi;Cong Shen;Liwei Wang;T. Zhang
- 通讯作者:Wei Xiong;Han Zhong;Chengshuai Shi;Cong Shen;Liwei Wang;T. Zhang
Teaching Reinforcement Learning Agents via Reinforcement Learning
通过强化学习教授强化学习代理
- DOI:10.1109/ciss56502.2023.10089695
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Yang, Kun;Shi, Chengshuai;Shen, Cong
- 通讯作者:Shen, Cong
Exploiting Feature Heterogeneity for Improved Generalization in Federated Multi-task Learning
- DOI:10.1109/isit54713.2023.10206757
- 发表时间:2023-06
- 期刊:
- 影响因子:0
- 作者:Renpu Liu;Jing Yang;Cong Shen
- 通讯作者:Renpu Liu;Jing Yang;Cong Shen
Provably Efficient Offline Reinforcement Learning with Perturbed Data Sources
- DOI:10.48550/arxiv.2306.08364
- 发表时间:2023-06
- 期刊:
- 影响因子:0
- 作者:Chengshuai Shi;Wei Xiong;Cong Shen;Jing Yang
- 通讯作者:Chengshuai Shi;Wei Xiong;Cong Shen;Jing Yang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cong Shen其他文献
On the Design of Modern Multilevel Coded Modulation for Unequal Error Protection
论现代多级编码调制的不等差错保护设计
- DOI:
10.1109/icc.2008.263 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Cong Shen;M. Fitz - 通讯作者:
M. Fitz
Multi-relation graph embedding for predicting miRNA-target gene interactions by integrating gene sequence information
通过整合基因序列信息预测 miRNA-靶基因相互作用的多关系图嵌入
- DOI:
10.1109/jbhi.2022.3168008 - 发表时间:
2022 - 期刊:
- 影响因子:7.7
- 作者:
Jiawei Luo;Wenjue Ouyang;Cong Shen;Jie Cai - 通讯作者:
Jie Cai
Stability analysis for interval time-varying delay systems based on time-varying bound integral method
基于时变界限积分法的区间时变时滞系统稳定性分析
- DOI:
10.1016/j.jfranklin.2014.07.015 - 发表时间:
2014-10 - 期刊:
- 影响因子:0
- 作者:
Qian Wei;Li Tao;Cong Shen;Fei Shumin - 通讯作者:
Fei Shumin
Stochastic Linear Contextual Bandits with Diverse Contexts
具有不同上下文的随机线性上下文强盗
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Weiqiang Wu;Jing Yang;Cong Shen - 通讯作者:
Cong Shen
Output-feedback stabilization control of systems with random switchings and state jumps
具有随机切换和状态跳跃的系统的输出反馈稳定控制
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Qian Wei;Cong Shen;Zheng Zheng - 通讯作者:
Zheng Zheng
Cong Shen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cong Shen', 18)}}的其他基金
Collaborative Research: CPS Medium: Learning through the Air: Cross-Layer UAV Orchestration for Online Federated Optimization
合作研究:CPS 媒介:空中学习:用于在线联合优化的跨层无人机编排
- 批准号:
2313110 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CCSS: Collaborative Research: Towards a Resource Rationing Framework for Wireless Federated Learning
CCSS:协作研究:无线联邦学习的资源配给框架
- 批准号:
2033671 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: MLWiNS: Dino-RL: A Domain Knowledge Enriched Reinforcement Learning Framework for Wireless Network Optimization
合作研究:MLWiNS:Dino-RL:用于无线网络优化的领域知识丰富的强化学习框架
- 批准号:
2002902 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT: SMALL: Learning-Efficient Spectrum Access for No-Sensing Devices in Shared Spectrum
合作研究:SWIFT:SMALL:共享频谱中无感知设备的学习高效频谱访问
- 批准号:
2029978 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
利用化学遗传学研究植物的向重力性
- 批准号:32370306
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
骤旱向季节性干旱演变的驱动机制及其对植被的影响机理
- 批准号:52309032
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
KLF5在前列腺肿瘤管腔祖细胞向神经内分泌细胞转变中的功能和机制研究
- 批准号:82303045
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
疏水FexC基催化剂上合成气向C4~C16线性α-烯烃的低碳、定向转化机制
- 批准号:22302149
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
脚手架蛋白RanBP9通过调控细胞周期停滞和获得SASP介导应激性衰老促进AKI向CKD转化的作用及机制
- 批准号:82300777
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Towards the understanding of how chaperones function and prevent amyloidogenic diseases
了解伴侣如何发挥作用并预防淀粉样蛋白形成疾病
- 批准号:
10734397 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Towards equitable early identification of autism spectrum disorders in females
实现女性自闭症谱系障碍的公平早期识别
- 批准号:
10722011 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
CAREER: Towards a complete picture of communication in anthropogenic noise - Auditory processing among urban and rural soundscapes.
职业:全面了解人为噪音中的交流——城市和乡村声景中的听觉处理。
- 批准号:
2414003 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Towards Privacy-Preserving Wireless Communication: Fundamental Limits and Coding Schemes
职业:走向保护隐私的无线通信:基本限制和编码方案
- 批准号:
2401373 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Towards Realizing Timely Information Transfer and Processing for Networked Communication Systems
职业:实现网络通信系统的及时信息传输和处理
- 批准号:
2146099 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant