Collaborative Research: SaTC: CORE: Small: Securing IoT and Edge Devices under Audio Adversarial Attacks

协作研究:SaTC:核心:小型:在音频对抗攻击下保护物联网和边缘设备

基本信息

  • 批准号:
    2114220
  • 负责人:
  • 金额:
    $ 33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

Powered by the advancement of artificial intelligence (AI) techniques, the next-generation voice-controllable IoT and edge systems have substantially facilitated people’s daily lives. Such systems include voice assistant systems and voice authenticated mobile banking, among many others. However, the underlying machine learning approaches used in these systems, are inherently vulnerable to audio adversarial attacks, in which an adversary can mislead the machine learning models via injecting imperceptible perturbation to the original audio input. Given the widespread adoption of voice-controllable IoT and edge systems in many privacy-critical and safety-critical applications, e.g., personal banking and autonomous driving, the in-depth understanding and investigation of severity and consequences of audio-based adversarial attack as well as the corresponding defense solutions, are highly demanded. This project will perform a comprehensive study and analysis of the vulnerability and robustness of voice-controllable IoT and edge systems against audio-domain adversarial attacks in both temporal and spatial perspectives. The research outcome of this project will form solid foundations for building trustworthy voice-controllable IoT and edge systems. The developed defense techniques will improve the security of many intelligent audio systems, such as automatic speech recognition (ASR), keyword spotting, and speaker recognition. This project will involve underrepresented students, undergraduate and graduate students, and K-12 students through a variety of engaging programs.The objective of this project is to demonstrate the feasibility of audio adversarial attacks in the physical world, determine the attack severity and consequences, and further develop defending strategies in practical environments to build attack-resilient voice-controllable Internet-of-Things (IoT) devices and edge systems. To study the possibility and severity of audio adversarial attacks in a practical time-constraint setting, the project will develop low-cost audio-agnostic synchronization-free attack launching schemes, including audio-specific fast adversarial perturbation generator and universal adversarial perturbation generator. To investigate how the adversarial perturbations survive various propagation factors in realistic environments, the project will analyze the audio distortions caused by the over-the-air propagation using an advanced room impulse response simulator and physical environment measurements. The project will also develop several defense techniques, including defensive denoiser, model enhancement, and microphone-array-based liveness detection. The presented technique will help to secure the voice-controllable IoT and edge devices under audio adversarial attacks. The project will also contribute to a new computing paradigm in audio-based adversarial machine learning in both theoretic foundations as well as safety-critical audio-oriented emerging applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在人工智能(AI)技术进步的推动下,下一代语音控制物联网和边缘系统极大地便利了人们的日常生活,这些系统包括语音助理系统和语音认证的移动银行等。这些系统中使用的机器学习方法本质上很容易受到音频对抗性攻击,鉴于语音控制的广泛采用,攻击者可以通过向原始音频输入注入难以察觉的扰动来误导机器学习模型。物联网和边缘系统在许多隐私关键和安全关键的应用中,例如个人银行和自动驾驶,对基于音频的对抗性攻击的严重性和后果的深入理解和调查以及相应的防御解决方案都受到高度重视。该项目将从时间和空间角度对语音控制物联网和边缘系统针对音频域对抗攻击的脆弱性和鲁棒性进行全面的研究和分析。语音控制物联网和边缘系统。所开发的防御技术将提高许多智能音频系统的安全性,例如自动语音识别(ASR)、关键字识别和说话人识别。该项目将涉及代表性不足的学生、本科生和研究生。和K-12学生通过各种参与计划。该项目的目的是演示音频对抗性攻击在物理世界中的可行性,确定攻击的严重性和后果,并在实际环境中进一步制定防御策略以构建攻击-有弹性的为了研究实际时间限制环境下音频对抗性攻击的可能性和严重性,该项目将开发低成本的与音频无关的无同步攻击启动方案。 ,包括音频特定的快速对抗性扰动生成器和通用对抗性扰动生成器为了研究对抗性扰动如何在现实环境中承受各种传播因素,该项目将分析由以下因素引起的音频失真。该项目还将开发多种防御技术,包括防御降噪器、模型增强和基于麦克风阵列的活体检测。确保语音控制的物联网和边缘设备免受音频对抗攻击,该项目还将在理论基础和面向安全的音频新兴应用中为基于音频的对抗机器学习的新计算范例做出贡献。通过使用基金会的智力价值和更广泛的影响审查标准进行评估,NSF 的法定使命被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Robust Detection of Machine-induced Audio Attacks in Intelligent Audio Systems with Microphone Array
具有麦克风阵列的智能音频系统中机器引发的音频攻击的鲁棒检测
Invisible and Efficient Backdoor Attacks for Compressed Deep Neural Networks
压缩深度神经网络的隐形高效后门攻击
HALOC: Hardware-Aware Automatic Low-Rank Compression for Compact Neural Networks
HALOC:紧凑型神经网络的硬件感知自动低阶压缩
RIBAC: Towards Robust and Imperceptible Backdoor Attack against Compact DNN
RIBAC:针对紧凑 DNN 的稳健且难以察觉的后门攻击
  • DOI:
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Phan, H.;Shi, C.;Xie, Y.;Zhang, T.;Li, Z.;Zhao, T.;Liu, J.;Wang, Y.;Chen, Y.;Yuan, B.
  • 通讯作者:
    Yuan, B.
Stealthy Backdoor Attack on RF Signal Classification
针对射频信号分类的隐形后门攻击
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yingying Chen其他文献

The Piezo channel is central to the mechano-sensitive channel complex in the mammalian inner ear.
压电通道是哺乳动物内耳中机械敏感通道复合体的中心。
  • DOI:
    10.21203/rs.3.rs-2287052/v1
  • 发表时间:
    2023-07-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Lee;Cristina M. Perez;Seojin Park;H. J. Kim;Yingying Chen;Mincheol Kang;Jennifer Kersigo;Jinsil Choi;Phung N. Thai;Ryan L Woltz;G. Perkins;Choong;Bernd Fritzsch;Pauline Trinh;Xiao;N. Chiamvimonvat;D. Perez;Padmini Sirish;Yao Dong;I. Pessah;Feng Wei;R. Dixon;B. Sokolowski;E. Yamoah
  • 通讯作者:
    E. Yamoah
Effects of interfacial contact under different operating conditions in proton exchange membrane water electrolysis
质子交换膜水电解不同操作条件下界面接触的影响
  • DOI:
    10.1016/j.electacta.2022.140942
  • 发表时间:
    2022-08-01
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Zhenye Kang;Tobias Schuler;Yingying Chen;Min Wang;Feng;G. Bender
  • 通讯作者:
    G. Bender
Syntheses, structures, and host-guest interactions of 2-D grid-type cyanide-bridged compounds [Zn(L)(H2O)2][M(CN)4]·3H2O (L = N,N′-bis(4-pyridylformamide)-1,4-benzene; M = Ni, Pd or Pt)
二维网格型氰化物桥化合物[Zn(L)(H2O)2][M(CN)4]·3H2O (L = N,Nâ²-bis)的合成、结构和主客体相互作用
  • DOI:
    10.1080/00958972.2013.832229
  • 发表时间:
    2013-08-07
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Ai;Xin Chen;Hu Zhou;Yingying Chen;Aihua Yuan
  • 通讯作者:
    Aihua Yuan
Insulin-like growth factor-1 and retinopathy of prematurity: a systemic review and meta-analysis.
胰岛素样生长因子-1 和早产儿视网膜病变:系统评价和荟萃分析。
  • DOI:
    10.1016/j.survophthal.2023.06.010
  • 发表时间:
    2023-07-01
  • 期刊:
  • 影响因子:
    5.1
  • 作者:
    Yanyan Fu;C. Lei;Ran Qibo;Xi Huang;Yingying Chen;Miao Wang;Meixia Zhang
  • 通讯作者:
    Meixia Zhang
Abnormal liver chemistry in patients with influenza A H1N1
甲型 H1N1 流感患者肝脏化学异常

Yingying Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yingying Chen', 18)}}的其他基金

Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
  • 批准号:
    2311596
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
SHF: Small: A General Framework for Accelerating AI on Resource-Constrained Edge Devices
SHF:小型:在资源受限的边缘设备上加速 AI 的通用框架
  • 批准号:
    2211163
  • 财政年份:
    2022
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Collaborative Research: CCRI: New: Nation-wide Community-based Mobile Edge Sensing and Computing Testbeds
合作研究:CCRI:新:全国范围内基于社区的移动边缘传感和计算测试平台
  • 批准号:
    2120396
  • 财政年份:
    2021
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: Planning: Hardware-accelerated Trustworthy Deep Neural Network
合作研究:PPoSS:规划:硬件加速的可信深度神经网络
  • 批准号:
    2028876
  • 财政年份:
    2020
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: Software Hardware Architecture Co-design for Low-power Heterogeneous Edge Devices
SHF:小型:协作研究:低功耗异构边缘设备的软件硬件架构协同设计
  • 批准号:
    1909963
  • 财政年份:
    2019
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Collaborative: Security Assurance in Short Range Communication with Wireless Channel Obfuscation
SaTC:核心:小型:协作:通过无线信道混淆实现短距离通信的安全保证
  • 批准号:
    1814590
  • 财政年份:
    2018
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
NeTS: Medium: Collaborative Research: Exploiting Fine-grained WiFi Signals for Wellbeing Monitoring
NeTS:媒介:协作研究:利用细粒度 WiFi 信号进行健康监测
  • 批准号:
    1826647
  • 财政年份:
    2017
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
SaTC: CORE: Small: Collaborative: Exploiting Physical Properties in Wireless Networks for Implicit Authentication
SaTC:核心:小型:协作:利用无线网络中的物理属性进行隐式身份验证
  • 批准号:
    1820624
  • 财政年份:
    2017
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Collaborative: Exploiting Physical Properties in Wireless Networks for Implicit Authentication
SaTC:核心:小型:协作:利用无线网络中的物理属性进行隐式身份验证
  • 批准号:
    1716500
  • 财政年份:
    2017
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
NeTS: Medium: Collaborative Research: Exploiting Fine-grained WiFi Signals for Wellbeing Monitoring
NeTS:媒介:协作研究:利用细粒度 WiFi 信号进行健康监测
  • 批准号:
    1514436
  • 财政年份:
    2015
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
  • 批准号:
    82304250
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肠道普拉梭菌代谢物丁酸抑制心室肌铁死亡改善老龄性心功能不全的机制研究
  • 批准号:
    82300430
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
  • 批准号:
    72302067
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向图像目标检测的新型弱监督学习方法研究
  • 批准号:
    62371157
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向开放域对话系统信息获取的准确性研究
  • 批准号:
    62376067
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338302
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330940
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330941
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317233
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了