SBIR Phase II: Optimizing emergency department nurse scheduling via a novel operational intelligence platform
SBIR 第二阶段:通过新颖的运营智能平台优化急诊科护士调度
基本信息
- 批准号:2112491
- 负责人:
- 金额:$ 99.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Cooperative Agreement
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broader impact/commercial potential of this Small Business Innovation Research (SBIR) Phase II project is to improve emergency clinical care. Emergency Departments are facing complex nursing utilization problems, fueled in part by scheduling systems built on flawed assumptions. Escalating nursing shortages and burnout must be addressed as fatigue is rampant. With hospitals facing significant revenue losses, there is no room for inefficient use of nurses. Nurse shifts must be intelligently sequenced in a way that optimizes available assets and balances complex sets of tradeoffs. The proposed solution uses artificial intelligence (AI) and operations research to predictively right-size clinical resources. The platform will be packaged as a cloud-based solution that reduces nursing staff churn, decreases patient wait times, reduces healthcare delivery costs, and improves revenue. Sophisticated mathematical approaches beyond what is available in the calendar and an Excel spreadsheet – specifically this project’s constraint-based algorithms, simulation methods and machine learning – will be the turning point in optimizing emergency department operational performance. This will improve the health system’s patient care, operational, and financial outcomes while reducing effort, waste, cost, and nurse burnout. This proposed project addresses the multi-stage emergency department nurse staffing problem by increasing scalability and usability. The proposed solution scales a set of multi-objective optimization algorithms based on operations research, sophisticated data science and queueing theory models to create an end-to-end decision support platform. The platform will provide longitudinal decision support for emergency department nurse staffing: nurse managers will use it daily for flexing decisions, monthly for schedule planning and assignment, and annually for budgeting. Objectives include: (1) Data science: refine and automate the forecasting, adapt the optimization model, generate and maintain input files, automate output files; (2) Front-end: create UI components, create service layer/API, wire service layer and UI, develop integration and component testing; (3) Back-end: implement container orchestration system, upgrade security, implement data ingest protocols, support development operations; and (4) Validate recommendation and create client ROI calculator.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该小企业创新研究 (SBIR) 第二阶段项目的更广泛影响/商业潜力是改善急诊临床护理,而急诊科面临着复杂的护理利用问题,部分原因是建立在有缺陷的假设之上的调度系统加剧了护理短缺和倦怠。由于疲劳现象普遍存在,医院面临着巨大的收入损失,护士轮班必须以优化可用资产和平衡复杂权衡的方式进行智能排序。该平台将使用人工智能 (AI) 和运筹学来预测性地调整临床资源规模,作为基于云的解决方案来减少护理人员流失、减少患者等待时间、降低医疗服务成本并提高复杂的数学收入。日历和 Excel 电子表格中可用的方法(特别是该项目基于约束的算法、模拟方法和机器学习)将成为优化急诊科运营绩效的转折点,这将改善卫生系统的患者护理、运营、和财务成果同时减少工作量、浪费、成本和护士倦怠。该提议的项目通过提高可扩展性和可用性来解决多阶段急诊科护士人员配备问题。该解决方案扩展了一组基于运筹学和复杂数据的多目标算法优化。科学和排队论模型创建一个端到端的决策支持平台,该平台将为急诊科护士人员配置提供纵向决策支持:护士经理将每天使用它来灵活决策,每月使用它来进行日程规划和分配,每年使用它来进行决策。预算目标。包括:(1) 数据科学:细化和自动化预测、调整优化模型、生成和维护输入文件、自动化输出文件;(2) 前端:创建 UI 组件、创建服务层/API、连接服务层和UI,开发集成和组件测试;(3)后端:实施容器编排系统,升级安全性,实施数据摄取协议,支持开发操作;(4)验证推荐并创建客户投资回报率计算器。该奖项反映了 NSF 的法定使命并被认为值得通过使用基金会的智力优势和更广泛的影响审查标准进行评估来提供支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephanie Gravenor其他文献
Geriatric Emergency Department Innovations: Preliminary Data for the Geriatric Nurse Liaison Model
老年急诊科创新:老年护士联络模型的初步数据
- DOI:
10.1111/jgs.12979 - 发表时间:
2014-09-01 - 期刊:
- 影响因子:6.3
- 作者:
A. Aldeen;D. Courtney;L. Lindquist;S. Dresden;Stephanie Gravenor - 通讯作者:
Stephanie Gravenor
Measuring the Correlation Between Emergency Medicine Resident and Attending Physician Patient Satisfaction Scores Using Press Ganey
使用 Press Ganey 衡量急诊科住院医师和主治医师患者满意度评分之间的相关性
- DOI:
10.1002/aet2.10039 - 发表时间:
2017-06-22 - 期刊:
- 影响因子:1.8
- 作者:
Spenser C. Lang;P. Weygandt;Tiffani A. Darling;Stephanie Gravenor;Juliet J. Evans;Michael J. Schmidt;M. Gisondi - 通讯作者:
M. Gisondi
Effectiveness of Resident Physicians as Triage Liaison Providers in an Academic Emergency Department
住院医生作为学术急诊科分诊联络提供者的有效性
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:3.1
- 作者:
V. Weston;S. Jain;M. Gottlieb;A. Aldeen;Stephanie Gravenor;Michael J. Schmidt;Sanjeev Malik - 通讯作者:
Sanjeev Malik
What Did You Google? Describing Online Health Information Search Patterns of ED patients and Their Relationship with Final Diagnoses
你谷歌了什么?
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:3.1
- 作者:
D. McCarthy;G. Scott;D. Courtney;Alyssa Czerniak;A. Aldeen;Stephanie Gravenor;S. Dresden - 通讯作者:
S. Dresden
Implementation fidelity of patient‐centered prescription label to promote opioid safe use
以患者为中心的处方标签的实施保真度以促进阿片类药物的安全使用
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:2.6
- 作者:
D. McCarthy;Andrea M. Russell;M. Eifler;Lauren A. Opsasnick;A. Lyden;Stephanie Gravenor;E. Montague;Scott Hur;K. Cameron;Laura M. Curtis;M. Wolf - 通讯作者:
M. Wolf
Stephanie Gravenor的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephanie Gravenor', 18)}}的其他基金
SBIR Phase I: Optimal Clinical Workforce Staffing and Scheduling using an Advanced Predictive Modeling System
SBIR 第一阶段:使用先进的预测建模系统优化临床劳动力人员配置和调度
- 批准号:
1914040 - 财政年份:2019
- 资助金额:
$ 99.97万 - 项目类别:
Standard Grant
相似国自然基金
动态疾病队列数据的最优二阶段抽样设计及因果推断
- 批准号:12271330
- 批准年份:2022
- 资助金额:46 万元
- 项目类别:面上项目
东亚夏季风在二氧化碳排放增减阶段中的响应差异及机理
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
西太平洋地球系统多圈层相互作用学术活动和战略研究 (第二阶段)
- 批准号:92058000
- 批准年份:2020
- 资助金额:300.0 万元
- 项目类别:重大研究计划
家系研究的统计推断与有偏二阶段抽样设计
- 批准号:11901376
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
面向数据发布隐私保护的分级多样性匿名方法研究
- 批准号:61862019
- 批准年份:2018
- 资助金额:36.0 万元
- 项目类别:地区科学基金项目
相似海外基金
SBIR Phase II: Design and production of a next generation vaccine to prevent COVID
SBIR 第二阶段:设计和生产下一代预防新冠病毒的疫苗
- 批准号:
2313338 - 财政年份:2024
- 资助金额:
$ 99.97万 - 项目类别:
Cooperative Agreement
SBIR Phase II: Low Earth Orbit Navigation System (LEONS) - The Ground Network
SBIR 第二阶段:近地轨道导航系统 (LEONS) - 地面网络
- 批准号:
2322418 - 财政年份:2024
- 资助金额:
$ 99.97万 - 项目类别:
Cooperative Agreement
SBIR Phase II: An Integrated Biomedical Platform and Custom Algorithm to Optimize Feeding Protocols for Preterm Infants
SBIR 第二阶段:用于优化早产儿喂养方案的综合生物医学平台和定制算法
- 批准号:
2335207 - 财政年份:2024
- 资助金额:
$ 99.97万 - 项目类别:
Cooperative Agreement
SBIR Phase II: Zero Trust Solution for Precision Medicine and Precision Health Data Exchanges
SBIR 第二阶段:精准医疗和精准健康数据交换的零信任解决方案
- 批准号:
2226026 - 财政年份:2024
- 资助金额:
$ 99.97万 - 项目类别:
Cooperative Agreement
SBIR Phase II: A mesh-free, sling-free, minimally invasive treatment for stress urinary incontinence in women
SBIR II 期:无网、无吊带的微创治疗女性压力性尿失禁
- 批准号:
2233106 - 财政年份:2024
- 资助金额:
$ 99.97万 - 项目类别:
Cooperative Agreement