SCC: Smart Water Crowdsensing: Examining How Innovative Data Analytics and Citizen Science Can Ensure Safe Drinking Water in Rural Versus Suburban Communities

SCC:智能水群体感知:研究创新数据分析和公民科学如何确保农村和郊区社区的安全饮用水

基本信息

  • 批准号:
    2140999
  • 负责人:
  • 金额:
    $ 146.64万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

Monitoring drinking water contamination is vitally important to inform consumers about water safety, identify source water problems, and facilitate discussion of public health and the environment of our drinking water. The overall goal of this project is to develop a framework for reliable and timely detection of drinking water contamination to build sustainable and connected communities. It focuses on communities that use private wells for drinking water without the benefit of a central utility to monitor water quality. It engages the community to participate, leveraging advances in data analytics, exploring the technological and social dimensions to answer a public health question: Is the drinking water in the community safe?This project advances the role of public participatory scientific research, also referred to as citizen science, in data gathering. It develops new inference models using approaches from machine learning and statistics to improve accuracy, reliability, trustworthiness and value of the data, gathered through public participation. It improves understanding of key socio-demographic factors that influence public participation and data quality in contrasting community types. It demonstrates the potential role of citizen science in eliciting changes in behavior, and how that influences programmatic and regulatory practices, e.g., in this study of groundwater quality for healthy and sustainable communities. This framework, known as the Smart Water Crowdsensing (SWC) framework, developed by this project for communities in Indiana studying water quality, should serve as an exemplar for communities nationwide seeking community public participation in studying local public health questions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
监测饮用水污染对于告知消费者水安全,识别水的问题并促进公共卫生和饮用水环境的讨论至关重要。该项目的总体目标是为可靠,及时检测饮用水污染以建立可持续和互联社区的框架开发一个框架。 它专注于使用私人水井进行饮用水的社区,而无需中央公用事业以监测水质。它吸引了社区参与,利用数据分析的进步,探索技术和社会方面以回答公共卫生问题:社区中的饮用水是否安全?公民科学,在数据收集中。它使用机器学习和统计数据的方法开发了新的推理模型,以提高通过公众参与收集的数据的准确性,可靠性,可信赖性和数据价值。 它提高了对影响公众参与和数据质量在对比的社区类型中的关键社会人口统计学因素的理解。它证明了公民科学在引起行为变化中的潜在作用,以及这如何影响程序和监管实践,例如,在这项针对健康和可持续社区的地下水质量的研究中。 该项目由该项目针对印第安纳州研究水质开发的该项目开发的智能水拥挤框架(SWC)框架,应作为全国社区的典范,以寻求社区公众参与研究当地公共健康问题。这一奖项反映了NSF的法规奖使命,并被认为是通过基金会的知识分子优点和更广泛影响的审查标准通过评估值得支持的。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
CrowdWaterSens: An uncertainty-aware crowdsensing approach to groundwater contamination estimation
  • DOI:
    10.1016/j.pmcj.2023.101788
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lanyu Shang;Yang Zhang;Quanhui Ye;Shannon L. Speir;Brett Peters;Ying Wu;Casey J. Stoffel;D. Bolster;J. Tank;Danielle Wood;Na Wei;Dong Wang
  • 通讯作者:
    Lanyu Shang;Yang Zhang;Quanhui Ye;Shannon L. Speir;Brett Peters;Ying Wu;Casey J. Stoffel;D. Bolster;J. Tank;Danielle Wood;Na Wei;Dong Wang
Solutions to Current Challenges in Widespread Monitoring of Groundwater Quality via Crowdsensing
  • DOI:
    10.1111/gwat.13150
  • 发表时间:
    2021-12-04
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Speir,Shannon L.;Shang,Lanyu;Wang,Dong
  • 通讯作者:
    Wang,Dong
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dong Wang其他文献

Optimization of sintering parameters for fabrication of Al2O3/TiN/TiC micro-nano-composite ceramic tool material based on microstructure evolution simulation
基于微观结构演化模拟的Al2O3/TiN/TiC微纳复合陶瓷刀具材料烧结参数优化
  • DOI:
    10.1016/j.ceramint.2020.10.164
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Dong Wang;Yifan Bai;Chao Xue;Yan Cao;Zhenghu Yan
  • 通讯作者:
    Zhenghu Yan
Transcriptomic profiling reveals disordered regulation of surfactant homeostasis in neonatal cloned bovines with collapsed lungs and respiratory distress
转录组分析揭示肺萎陷和呼吸窘迫的新生克隆牛表面活性剂稳态调节紊乱
  • DOI:
    10.1002/mrd.22836
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Yan Liu;Y. Rao;Xiaojing Jiang;Fanyi Zhang;Linhua Huang;W. Du;H. Hao;Xueming Zhao;Dong Wang;Q. Jiang;Huabin Zhu;Xiuzhu Sun
  • 通讯作者:
    Xiuzhu Sun
Forecasting Model of Maritime Accidents Based on Influencing Factors Analysis
基于影响因素分析的海上事故预测模型
  • DOI:
    10.4028/www.scientific.net/amm.253-255.1268
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dong Wang;Chaoying Yin;Jian Ai
  • 通讯作者:
    Jian Ai
Adverse selection and moral hazard on network platform of science and technology papers published based on principal-agent theory
基于委托代理理论的网络平台科技论文发表逆向选择与道德风险
Provenance-Assisted Classification in Social Networks
社交网络中的来源辅助分类
  • DOI:
    10.1109/jstsp.2014.2311586
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    7.5
  • 作者:
    Dong Wang;Md. Tanvir Al Amin;T. Abdelzaher;D. Roth;Clare R. Voss;Lance M. Kaplan;S. Tratz;J. Laoudi;Douglas M. Briesch
  • 通讯作者:
    Douglas M. Briesch

Dong Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dong Wang', 18)}}的其他基金

FairFL-MC: A Metacognitive Calibration Intervention Powered by Fair and Private Machine Learning
FairFL-MC:由公平和私人机器学习支持的元认知校准干预
  • 批准号:
    2202481
  • 财政年份:
    2022
  • 资助金额:
    $ 146.64万
  • 项目类别:
    Standard Grant
D3SC: CDS&E: Collaborative Research: Machine Learning Modeling for the Reactivity of Organic Contaminants in Engineered and Natural Environments
D3SC:CDS
  • 批准号:
    2105032
  • 财政年份:
    2021
  • 资助金额:
    $ 146.64万
  • 项目类别:
    Standard Grant
High-Valent Non-Oxo-Metal Complexes of Late Transition Metals For sp3 C–H Bond Activation
用于 sp3 C–H 键活化的后过渡金属高价非氧代金属配合物
  • 批准号:
    2102339
  • 财政年份:
    2021
  • 资助金额:
    $ 146.64万
  • 项目类别:
    Standard Grant
CAREER: Towards Reliable and Optimized Data-Driven Cyber-Physical Systems using Human-Centric Sensing
职业:利用以人为本的传感实现可靠且优化的数据驱动的网络物理系统
  • 批准号:
    2131622
  • 财政年份:
    2021
  • 资助金额:
    $ 146.64万
  • 项目类别:
    Continuing Grant
CHS: Small: DeepCrowd: A Crowd-assisted Deep Learning-based Disaster Scene Assessment System with Active Human-AI Interactions
CHS:小型:DeepCrowd:一种基于人群辅助、基于深度学习的灾难场景评估系统,具有主动人机交互功能
  • 批准号:
    2130263
  • 财政年份:
    2021
  • 资助金额:
    $ 146.64万
  • 项目类别:
    Standard Grant
CHS: Small: DeepCrowd: A Crowd-assisted Deep Learning-based Disaster Scene Assessment System with Active Human-AI Interactions
CHS:小型:DeepCrowd:一种基于人群辅助、基于深度学习的灾难场景评估系统,具有主动人机交互功能
  • 批准号:
    2008228
  • 财政年份:
    2021
  • 资助金额:
    $ 146.64万
  • 项目类别:
    Standard Grant
CAREER: Towards Reliable and Optimized Data-Driven Cyber-Physical Systems using Human-Centric Sensing
职业:利用以人为本的传感实现可靠且优化的数据驱动的网络物理系统
  • 批准号:
    1845639
  • 财政年份:
    2019
  • 资助金额:
    $ 146.64万
  • 项目类别:
    Continuing Grant
SCC: Smart Water Crowdsensing: Examining How Innovative Data Analytics and Citizen Science Can Ensure Safe Drinking Water in Rural Versus Suburban Communities
SCC:智能水群体感知:研究创新数据分析和公民科学如何确保农村和郊区社区的安全饮用水
  • 批准号:
    1831669
  • 财政年份:
    2018
  • 资助金额:
    $ 146.64万
  • 项目类别:
    Standard Grant
EAGER: Smart Water Sensing for Sustainable and Connected Communities Using Citizen Science
EAGER:利用公民科学为可持续和互联社区提供智能水传感
  • 批准号:
    1637251
  • 财政年份:
    2016
  • 资助金额:
    $ 146.64万
  • 项目类别:
    Standard Grant
CRII: CPS: Towards Reliable Cyber-Physical Systems using Unreliable Human Sensors
CRII:CPS:使用不可靠的人体传感器实现可靠的网络物理系统
  • 批准号:
    1566465
  • 财政年份:
    2016
  • 资助金额:
    $ 146.64万
  • 项目类别:
    Standard Grant

相似国自然基金

基于“活性-代谢组-基因组-SMART”整合策略发掘老鼠簕内生放线菌新型先导化合物
  • 批准号:
    82360696
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
大智慧还是小聪明?绩效压力对创造性绩效的双面效应机制
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    47 万元
  • 项目类别:
基于SMART设计建立中医药随机对照试验“随证施治”决策模型的研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目

相似海外基金

SCC-IRG Track 1: Community Based Approach to Address Contaminants in Drinking Water using Smart Cloud-Connected Electrochemical Sensors
SCC-IRG 第 1 轨道:使用智能云连接的电化学传感器解决饮用水中污染物的基于社区的方法
  • 批准号:
    2230180
  • 财政年份:
    2022
  • 资助金额:
    $ 146.64万
  • 项目类别:
    Standard Grant
SCC-PG: Community Based Approach to Address Heavy Metal Contamination in Drinking Water using Cloud-Connected Smart Electrochemical Sensors
SCC-PG:使用云连接的智能电化学传感器解决饮用水中重金属污染的基于社区的方法
  • 批准号:
    1952147
  • 财政年份:
    2020
  • 资助金额:
    $ 146.64万
  • 项目类别:
    Standard Grant
SCC-IRG-Track2: Creating an Extensible Data Exchange and Analytics Sandbox for Smart Water infrastructures
SCC-IRG-Track2:为智能水务基础设施创建可扩展的数据交换和分析沙箱
  • 批准号:
    1952247
  • 财政年份:
    2020
  • 资助金额:
    $ 146.64万
  • 项目类别:
    Standard Grant
SCC: Smart Water Crowdsensing: Examining How Innovative Data Analytics and Citizen Science Can Ensure Safe Drinking Water in Rural Versus Suburban Communities
SCC:智能水群体感知:研究创新数据分析和公民科学如何确保农村和郊区社区的安全饮用水
  • 批准号:
    1831669
  • 财政年份:
    2018
  • 资助金额:
    $ 146.64万
  • 项目类别:
    Standard Grant
SCC-Planning: Smart and Connected Residential Water Quality Community
SCC-规划:智能互联住宅水质社区
  • 批准号:
    1737514
  • 财政年份:
    2017
  • 资助金额:
    $ 146.64万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了