D3SC: CDS&E: Collaborative Research: Machine Learning Modeling for the Reactivity of Organic Contaminants in Engineered and Natural Environments

D3SC:CDS

基本信息

  • 批准号:
    2105032
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

With support from the Environmental Chemical Sciences Program of the NSF Division of Chemistry, Professors Huichun Zhang of Case Western Reserve University and Dong Wang of University of Illinois Urbana—Champaign will develop machine learning models to predict the reactivity of thousands of organic contaminants (OCs) in engineered (water) and natural (soil and sediment) environments. To assess and mitigate risks associated with this vast number of OCs, accurate predictive models are needed to readily provide reasonable estimates of their reactivity, both during important water treatment processes and in the environment. However, existing models rely heavily on conventional statistical methods. They have multiple limitations such as small numbers and narrow scopes of OCs involved and lengthy calculations of molecular properties. The project will employ advanced machine learning algorithms to predict contaminant reactivities. The obtained machine learning models will help identify OCs of concern and optimize the treatment processes. In addition, environmental data science will be developed as a new educational track at the pilot scale. Graduate, undergraduate and high school students with diverse backgrounds will be engaged in interdisciplinary research, including modeling and experimental work. The project also plans hands-on activities on OCs for girls in grade 6-12 and underrepresented college students. This study will systematically develop comprehensive and accurate machine learning models for predicting the reactivity of thousands of OCs in advanced oxidation processes (AOPs), adsorption onto engineered adsorbents, sorption onto soils and sediments, and biodegradation. The objectives of this research are to 1) mine the literature and available databases to obtain the largest datasets of contaminant reactivity in AOPs, (ad)sorption and biodegradation; 2) experimentally quantify the reactivity of selected OCs in AOPs, (ad)sorption and biodegradation; 3) develop confidence-aware machine learning models for the reactivity of OCs based on the data from the above two objectives; and 4) interpret the obtained models to make them trustable and define their applicability domains. OCs will be modeled by new chemical representations including molecular fingerprints, molecular images, and different combinations of them with molecular descriptors. Including (ad)sorbent properties in the (ad)sorption models will be a major step to expand the model applicability to diverse (ad)sorbent structures and properties. Properly interpreting and modifying the obtained models and calculating model confidence bounds will make the obtained models trustable.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在美国国家科学基金会化学部环境化学科学项目的支持下,凯斯西储大学的张惠春教授和伊利诺伊大学香槟分校的王东教授将开发机器学习模型来预测数千种有机污染物(OC)的反应性在工程(水)和自然(土壤和沉积物)环境中,为了评估和减轻与大量有机污染物相关的风险,需要准确的预测模型,以便在重要的水处理过程中轻松提供对其反应性的合理估计。然而,现有模型严重依赖传统的统计方法,例如涉及的有机物数量少、范围窄,以及分子特性的计算冗长等。获得的机器学习模型将有助于识别相关的OC并优化处理流程。此外,环境数据科学将作为试点规模开发,以吸引不同背景的研究生、本科生和高中生参与。跨学科研究,包括该项目还计划为 6-12 年级的女生和代表性不足的大学生开展 OC 实践活动,这项研究将不可避免地开发出全面而准确的机器学习模型,用于预测高级氧化过程中数千个 OC 的反应性。 (AOP)、工程吸附剂上的吸附、土壤和沉积物上的吸附以及生物降解 本研究的目标是 1)挖掘文献和可用数据库以获得最大的数据集。 AOP 中的污染物反应性、(吸附)吸附和生物降解;2)通过实验量化 AOP 中选定的 OC 的反应性、(吸附)吸附和生物降解;3)根据以下数据开发 OC 反应性的可信机器学习模型上述两个目标;4) 解释所获得的模型,使其可信并定义其适用范围,将通过新的化学表示(包括分子指纹、分子)来建模。图像,以及它们与分子描述符的不同组合。在(吸附)吸附模型中包含(吸附)吸附剂特性将是扩展模型适用于各种(吸附)吸附剂结构和特性的重要一步。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dong Wang其他文献

Optimization of sintering parameters for fabrication of Al2O3/TiN/TiC micro-nano-composite ceramic tool material based on microstructure evolution simulation
基于微观结构演化模拟的Al2O3/TiN/TiC微纳复合陶瓷刀具材料烧结参数优化
  • DOI:
    10.1016/j.ceramint.2020.10.164
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Dong Wang;Yifan Bai;Chao Xue;Yan Cao;Zhenghu Yan
  • 通讯作者:
    Zhenghu Yan
Transcriptomic profiling reveals disordered regulation of surfactant homeostasis in neonatal cloned bovines with collapsed lungs and respiratory distress
转录组分析揭示肺萎陷和呼吸窘迫的新生克隆牛表面活性剂稳态调节紊乱
  • DOI:
    10.1002/mrd.22836
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Yan Liu;Y. Rao;Xiaojing Jiang;Fanyi Zhang;Linhua Huang;W. Du;H. Hao;Xueming Zhao;Dong Wang;Q. Jiang;Huabin Zhu;Xiuzhu Sun
  • 通讯作者:
    Xiuzhu Sun
Forecasting Model of Maritime Accidents Based on Influencing Factors Analysis
基于影响因素分析的海上事故预测模型
  • DOI:
    10.4028/www.scientific.net/amm.253-255.1268
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dong Wang;Chaoying Yin;Jian Ai
  • 通讯作者:
    Jian Ai
Adverse selection and moral hazard on network platform of science and technology papers published based on principal-agent theory
基于委托代理理论的网络平台科技论文发表逆向选择与道德风险
Provenance-Assisted Classification in Social Networks
社交网络中的来源辅助分类
  • DOI:
    10.1109/jstsp.2014.2311586
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    7.5
  • 作者:
    Dong Wang;Md. Tanvir Al Amin;T. Abdelzaher;D. Roth;Clare R. Voss;Lance M. Kaplan;S. Tratz;J. Laoudi;Douglas M. Briesch
  • 通讯作者:
    Douglas M. Briesch

Dong Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dong Wang', 18)}}的其他基金

FairFL-MC: A Metacognitive Calibration Intervention Powered by Fair and Private Machine Learning
FairFL-MC:由公平和私人机器学习支持的元认知校准干预
  • 批准号:
    2202481
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
High-Valent Non-Oxo-Metal Complexes of Late Transition Metals For sp3 C–H Bond Activation
用于 sp3 C–H 键活化的后过渡金属高价非氧代金属配合物
  • 批准号:
    2102339
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
SCC: Smart Water Crowdsensing: Examining How Innovative Data Analytics and Citizen Science Can Ensure Safe Drinking Water in Rural Versus Suburban Communities
SCC:智能水群体感知:研究创新数据分析和公民科学如何确保农村和郊区社区的安全饮用水
  • 批准号:
    2140999
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
CAREER: Towards Reliable and Optimized Data-Driven Cyber-Physical Systems using Human-Centric Sensing
职业:利用以人为本的传感实现可靠且优化的数据驱动的网络物理系统
  • 批准号:
    2131622
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
CHS: Small: DeepCrowd: A Crowd-assisted Deep Learning-based Disaster Scene Assessment System with Active Human-AI Interactions
CHS:小型:DeepCrowd:一种基于人群辅助、基于深度学习的灾难场景评估系统,具有主动人机交互功能
  • 批准号:
    2130263
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
CHS: Small: DeepCrowd: A Crowd-assisted Deep Learning-based Disaster Scene Assessment System with Active Human-AI Interactions
CHS:小型:DeepCrowd:一种基于人群辅助、基于深度学习的灾难场景评估系统,具有主动人机交互功能
  • 批准号:
    2008228
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
CAREER: Towards Reliable and Optimized Data-Driven Cyber-Physical Systems using Human-Centric Sensing
职业:利用以人为本的传感实现可靠且优化的数据驱动的网络物理系统
  • 批准号:
    1845639
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
SCC: Smart Water Crowdsensing: Examining How Innovative Data Analytics and Citizen Science Can Ensure Safe Drinking Water in Rural Versus Suburban Communities
SCC:智能水群体感知:研究创新数据分析和公民科学如何确保农村和郊区社区的安全饮用水
  • 批准号:
    1831669
  • 财政年份:
    2018
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
EAGER: Smart Water Sensing for Sustainable and Connected Communities Using Citizen Science
EAGER:利用公民科学为可持续和互联社区提供智能水传感
  • 批准号:
    1637251
  • 财政年份:
    2016
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
CRII: CPS: Towards Reliable Cyber-Physical Systems using Unreliable Human Sensors
CRII:CPS:使用不可靠的人体传感器实现可靠的网络物理系统
  • 批准号:
    1566465
  • 财政年份:
    2016
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似海外基金

D3SC: CDS&E: Collaborative Research: Machine Learning Modeling for the Reactivity of Organic Contaminants in Engineered and Natural Environments
D3SC:CDS
  • 批准号:
    2105005
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了