EAGER/Collaborative Research: High-throughput, Autonomous Real-time Monitoring of Tissue Mechanical Property Change via Impedimetric Sensor Arrays

EAGER/协作研究:通过阻抗传感器阵列高通量、自主实时监测组织机械性能变化

基本信息

项目摘要

This EArly-concept Grant for Exploratory Research (EAGER) will support research to improve engineered tissues. Engineered tissues have become important platforms for the development of therapeutics for many diseases and disorders. They hold particular promise for improving wound healing. Cells sense and respond their environment. How they sense their environment effects how they form tissues. How a cell's local environment affects it's behavior during wound healing is still not well understood. There have been substantial strides that have been made in the use of engineered tissues for disease modeling and drug development. However, simultaneously monitoring cellular behavior and tissue properties remains a challenge, and limits further advances. This project will create autonomous tissue culture monitoring platforms that enable real-time monitoring of multi-scale cellular behavior and tissue properties. If successful, scalable and high-throughput methods for autonomous monitoring of engineered tissues will be realized. This could have profound and broad socioeconomic benefits in terms of public health and drug discovery. The project will engage students through research experiences for undergraduates in data acquisition for autonomous life sciences research. The goal of this project is to advance the ability to simultaneously quantify the dynamic multi-scale attributes of engineered tissues in real time. The central approach is to establish the feasibility of a novel autonomous sensor-based experimental platform for dynamically quantifying bulk extracellular matrix (ECM) mechanical properties, multi-cellular anatomical structures, cell phenotypes, and gene and protein expression during wound healing processes using sensor-integrated 3D cell culture models. The work involves the following research objectives: 1) to utilize a cantilever sensor-integrated well plate format for autonomous monitoring of a fibroblast-Schwann cell 3D co-culture model treated with exogenous transforming growth factor (TGF-β) to invoke a wound healing response, and 2) to compare real-time changes in bulk ECM mechanical properties with temporal changes in gene and protein expression levels in 3D co-culture models. This work will yield the first quantitative description of the dynamic relationship between real-time ECM mechanical changes and cell behaviors in tissues undergoing wound healing. The project also provides research experiences for undergraduate students in data acquisition for autonomous tissue characterization and bioprocess monitoring.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项早期概念探索性研究资助 (EAGER) 将支持改善工程组织的研究。工程组织已成为开发许多疾病和病症的治疗方法的重要平台,它们在改善细胞感知和反应方面具有特殊的前景。它们如何感知环境影响它们形成组织的方式。细胞的局部环境如何影响其在伤口愈合过程中的行为,在使用工程组织进行疾病建模和药物方面已经取得了实质性进展。然而,同时监测细胞行为和组织特性仍然是一个挑战,并且限制了该项目的进一步发展,该平台将能够实时监测多尺度细胞行为和组织特性。该项目将实现工程组织自主监测的高通量方法,这可能会在公共卫生和药物发现方面产生深远而广泛的社会经济效益。该项目的目标是提高同时实时量化工程组织的动态多尺度属性是建立一种新型的基于自主传感器的实验平台的可行性,用于动态量化大量细胞外基质(ECM)机械特性、多细胞解剖结构、细胞。使用集成传感器的 3D 细胞培养模型研究伤口愈合过程中的表型、基因和蛋白质表达。这项工作涉及以下研究目标:1) 利用悬臂传感器集成孔板形式进行自主监测。成纤维细胞-雪旺细胞 3D 共培养模型,经外源转化生长因子 (TGF-β) 处理以引发伤口愈合反应,2) 将整体 ECM 机械特性的实时变化与基因和蛋白质表达水平的时间变化进行比较这项工作将首次定量描述实时 ECM 机械变化与正在进行伤口愈合的组织中的细胞行为之间的动态关系,该项目还为本科生提供自主组织数据采集的研究经验。表征和该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Blake Johnson其他文献

“I Am Who I Am Because of Here!”
“我就是因为这里才成为我的!”
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Elizabeth Levine Brown;M. Kanny;Blake Johnson
  • 通讯作者:
    Blake Johnson
Effectiveness of team-focused CPR on in-hospital CPR quality and outcomes
以团队为中心的心肺复苏对院内心肺复苏质量和结果的有效性
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    David A. Pearson;Nicole Bensen Covell;Benjamin Covell;Blake Johnson;Cate Lounsbury;Mike Przybysz;Anthony Weekes;Michael Runyon
  • 通讯作者:
    Michael Runyon
JuliaNLSolvers/Optim.jl: v1.2.1
JuliaNLSolvers/Optim.jl:v1.2.1
  • DOI:
    10.5281/zenodo.4340418
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Patrick Kofod Mogensen;J. White;A. N. Riseth;Tim Holy;M. Lubin;C. Stocker;Andreas Noack;Antoine Levitt;C. Ortner;Blake Johnson;Dahua Lin;Kristoffer Carlsson;Yichao Yu;Christopher Rackauckas;Alex Williams;Ben Kuhn;J. Regier;Cossio;R. Rock;Thomas R. Covert;Takafumi Arakaki;Alexey Stukalov;Andrew P. Clausen;Benjamin Deonovic;B. Pasquier;B. Legat;D. MacMillen;Iain Dunning;Jarrett Revels
  • 通讯作者:
    Jarrett Revels
A comparison of sterilization techniques for production of decellularized intestine in mice.
小鼠脱细胞肠道生产灭菌技术的比较。
  • DOI:
    10.1089/ten.tec.2019.0219
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Carolyn E Gosztyla;Mitchell R. Ladd;A. Werts;W. Fulton;Blake Johnson;C. Sodhi;D. Hackam
  • 通讯作者:
    D. Hackam
Biomechanical Evaluation of a Jackhammering Task with and Without List Assist
使用和不使用列表辅助的手提钻任务的生物力学评估
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Blake Johnson
  • 通讯作者:
    Blake Johnson

Blake Johnson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Blake Johnson', 18)}}的其他基金

CAREER: Transforming Biosensor Reliability using Sensor Time-series Data and Physics-based Machine Learning
职业:使用传感器时间序列数据和基于物理的机器学习改变生物传感器的可靠性
  • 批准号:
    2144310
  • 财政年份:
    2022
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Continuing Grant
Collaborative Research: ISS: Real-time Sensing of Extracellular Matrix Remodeling during Fibroblast Phenotype Switching and Vascular Network Formation in Wound Healing
合作研究:ISS:实时感知成纤维细胞表型转换和伤口愈合中血管网络形成过程中的细胞外基质重塑
  • 批准号:
    2126176
  • 财政年份:
    2022
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Standard Grant
EAGER: Non-invasive Sensing of Superficial Organ Tissue via Conforming Multi-parametric Microfluidic Organ Biosensors (MMOBs): Shifting the Paradigm for Organ Assessment
EAGER:通过多参数微流控器官生物传感器 (MMOB) 对浅表器官组织进行非侵入式传感:改变器官评估的范式
  • 批准号:
    1650601
  • 财政年份:
    2016
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Standard Grant

相似国自然基金

基于交易双方异质性的工程项目组织间协作动态耦合研究
  • 批准号:
    72301024
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向协作感知车联网的信息分发时效性保证关键技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
数据物理驱动的车间制造服务协作可靠性机理与优化方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333604
  • 财政年份:
    2024
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了