EAGER/Collaborative Research: High-throughput, Autonomous Real-time Monitoring of Tissue Mechanical Property Change via Impedimetric Sensor Arrays

EAGER/协作研究:通过阻抗传感器阵列高通量、自主实时监测组织机械性能变化

基本信息

项目摘要

This EArly-concept Grant for Exploratory Research (EAGER) will support research to improve engineered tissues. Engineered tissues have become important platforms for the development of therapeutics for many diseases and disorders. They hold particular promise for improving wound healing. Cells sense and respond their environment. How they sense their environment effects how they form tissues. How a cell's local environment affects it's behavior during wound healing is still not well understood. There have been substantial strides that have been made in the use of engineered tissues for disease modeling and drug development. However, simultaneously monitoring cellular behavior and tissue properties remains a challenge, and limits further advances. This project will create autonomous tissue culture monitoring platforms that enable real-time monitoring of multi-scale cellular behavior and tissue properties. If successful, scalable and high-throughput methods for autonomous monitoring of engineered tissues will be realized. This could have profound and broad socioeconomic benefits in terms of public health and drug discovery. The project will engage students through research experiences for undergraduates in data acquisition for autonomous life sciences research. The goal of this project is to advance the ability to simultaneously quantify the dynamic multi-scale attributes of engineered tissues in real time. The central approach is to establish the feasibility of a novel autonomous sensor-based experimental platform for dynamically quantifying bulk extracellular matrix (ECM) mechanical properties, multi-cellular anatomical structures, cell phenotypes, and gene and protein expression during wound healing processes using sensor-integrated 3D cell culture models. The work involves the following research objectives: 1) to utilize a cantilever sensor-integrated well plate format for autonomous monitoring of a fibroblast-Schwann cell 3D co-culture model treated with exogenous transforming growth factor (TGF-β) to invoke a wound healing response, and 2) to compare real-time changes in bulk ECM mechanical properties with temporal changes in gene and protein expression levels in 3D co-culture models. This work will yield the first quantitative description of the dynamic relationship between real-time ECM mechanical changes and cell behaviors in tissues undergoing wound healing. The project also provides research experiences for undergraduate students in data acquisition for autonomous tissue characterization and bioprocess monitoring.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
探索性研究(急切)的早期概念赠款将支持改善工程组织的研究。工程组织已成为为许多疾病和疾病开发治疗剂的重要平台。他们对改善伤口愈合的诺言具有特殊的希望。细胞感知并响应他们的环境。他们如何感觉自己的环境如何形成组织。细胞的局部环境如何影响伤口愈合期间的行为,仍然不太了解。在使用工程组织进行疾病建模和药物开发方面已经取得了长足的进步。但是,仅仅监测细胞行为和组织特性仍然是一个挑战,并限制了进一步的进步。该项目将创建自主组织培养监测平台,以实时监测多尺度的细胞行为和组织特性。如果成功,将实现用于自主监测工程组织的可扩展和高通量方法。就公共卫生和药物发现而言,这可能具有深远而广泛的社会经济利益。该项目将通过研究经验来吸引学生,以在自治生活科学研究的数据获取数据中吸引学生。该项目的目的是提高轻松实时量化工程组织的动态多尺度属性的能力。中心方法是建立一个基于自主传感器的新型实验平台的可行性,以动态量化大量块状细胞外基质(ECM)机械性能,多细胞解剖结构,细胞表型,基因和蛋白质表达在伤口愈合过程中使用传感器融合的3D细胞培养模型。这项工作涉及以下研究目标:1)利用悬臂传感器融合板格式来自主监控,以自主监测的成纤维细胞 - 施旺旺细胞3D共培养模型,该模型用外源转化的生长因子(TGF-β)进行了处理,以使临时疗效响应与临时级别的表达相比,并与bute的级别变化相比,并与bute的级别变化相比型号。这项工作将对实时ECM机械变化与经历伤口愈合的组织中的细胞行为之间的动态关系产生第一个定量描述。该项目还为本科生提供了研究经验,以进行自动组织表征和生物处理监控的数据获取。该奖项反映了NSF的法定任务,并通过使用基金会的知识分子和更广泛的影响评估标准来评估NSF的法定任务。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Blake Johnson其他文献

Monetary stability and the rule of law
  • DOI:
    10.1016/j.jfs.2014.09.002
  • 发表时间:
    2015-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Mark Koyama;Blake Johnson
  • 通讯作者:
    Blake Johnson
“I Am Who I Am Because of Here!”
“我就是因为这里才成为我的!”
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Elizabeth Levine Brown;M. Kanny;Blake Johnson
  • 通讯作者:
    Blake Johnson
Effect of Pass/Fail Grading vs Letter Grading on Pharmacy Students’ Achievement Goal Orientations
  • DOI:
    10.1016/j.ajpe.2023.100296
  • 发表时间:
    2023-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Juliette Miller;Beth B. Phillips;Russ Palmer;Michael J. Fulford;Blake Johnson;Devin Lavender;Rebecca Stone
  • 通讯作者:
    Rebecca Stone
Effectiveness of team-focused CPR on in-hospital CPR quality and outcomes
以团队为中心的心肺复苏对院内心肺复苏质量和结果的有效性
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    David A. Pearson;Nicole Bensen Covell;Benjamin Covell;Blake Johnson;Cate Lounsbury;Mike Przybysz;Anthony Weekes;Michael Runyon
  • 通讯作者:
    Michael Runyon
A comparison of sterilization techniques for production of decellularized intestine in mice.
小鼠脱细胞肠道生产灭菌技术的比较。
  • DOI:
    10.1089/ten.tec.2019.0219
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Carolyn E Gosztyla;Mitchell R. Ladd;A. Werts;W. Fulton;Blake Johnson;C. Sodhi;D. Hackam
  • 通讯作者:
    D. Hackam

Blake Johnson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Blake Johnson', 18)}}的其他基金

CAREER: Transforming Biosensor Reliability using Sensor Time-series Data and Physics-based Machine Learning
职业:使用传感器时间序列数据和基于物理的机器学习改变生物传感器的可靠性
  • 批准号:
    2144310
  • 财政年份:
    2022
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Continuing Grant
Collaborative Research: ISS: Real-time Sensing of Extracellular Matrix Remodeling during Fibroblast Phenotype Switching and Vascular Network Formation in Wound Healing
合作研究:ISS:实时感知成纤维细胞表型转换和伤口愈合中血管网络形成过程中的细胞外基质重塑
  • 批准号:
    2126176
  • 财政年份:
    2022
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Standard Grant
EAGER: Non-invasive Sensing of Superficial Organ Tissue via Conforming Multi-parametric Microfluidic Organ Biosensors (MMOBs): Shifting the Paradigm for Organ Assessment
EAGER:通过多参数微流控器官生物传感器 (MMOB) 对浅表器官组织进行非侵入式传感:改变器官评估的范式
  • 批准号:
    1650601
  • 财政年份:
    2016
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Standard Grant

相似国自然基金

数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
  • 批准号:
    72372084
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
在线医疗团队协作模式与绩效提升策略研究
  • 批准号:
    72371111
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
面向人机接触式协同作业的协作机器人交互控制方法研究
  • 批准号:
    62373044
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于数字孪生的颅颌面人机协作智能手术机器人关键技术研究
  • 批准号:
    82372548
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
A-型结晶抗性淀粉调控肠道细菌协作产丁酸机制研究
  • 批准号:
    32302064
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333604
  • 财政年份:
    2024
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了