Collaborative Research: From Magma to Vents: Monitoring Hydrothermal Fluid Temperature and Upflow-zone Permeability in Relation to Magma Movement at Axial Seamount
合作研究:从岩浆到喷口:监测热液温度和上流区渗透率与轴向海山岩浆运动的关系
基本信息
- 批准号:2140989
- 负责人:
- 金额:$ 25.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Most of the volcanoes on Earth are located on the deep ocean floor and serve as heat reservoirs that boil sea water and give rise to hot springs on the seafloor. These deep-sea hot springs are the source of energy for many unique creatures on the seafloor far from any light. Knowledge of these deep-sea environments is still limited and there is much to be learned about how the hot springs change with time as a volcano’s heat reservoir grows and shrinks. This study will use specially designed gauges to measure the temperatures inside multiple hot springs located on an underwater volcano called Axial Seamount in the Northeast Pacific Ocean. Axial is one of the best studied volcanoes in the ocean. Using sensors that monitor the rise and fall of the seafloor on the volcano, scientists forecast that Axial will erupt in the next few years. By analyzing the temperature variations at Axial Volcano’s hot springs, this project will learn more about how the springs and their deep roots inside the volcano change during its buildup towards the next eruption.Magmatic activities along the mid-ocean ridge system related to seafloor spreading account for most of the earth’s volcanic output. The associated hydrothermal systems provide a key linkage between the lithosphere and the hydrosphere, transferring heat and nutrients that ultimately support the biosphere. Seafloor hydrothermal systems are primarily regulated by their subsurface heat supplies and hydrologic properties such as permeability that regulate crustal fluid flow. The considerable difficulties in establishing concurrent, long-term monitoring of those sub-seafloor properties within young oceanic crust in conjunction with surface venting have greatly limited our understanding of hydrothermal variability in relation to submarine magmatic processes. This project will fill this knowledge gap by 1) conducting long-term, high-resolution, time-series measurements of hydrothermal effluent temperature at multiple high-temperature, focused vent sites across the summit caldera of Axial Seamount, 2) using a one-dimensional, multi-layer poroelastic model to derive time-varying estimates of effective upflow-zone permeability from tidal modulation of vent-fluid temperature, and 3) interpreting observed temperature and permeability variations within a broader context constructed from the geodetic and seismic monitoring established at Axial as part of the Ocean Observatories Initiative’s Regional Cabled Array observatory along with other complementary geophysical observations such as state-of-the-art three-dimensional seismic imaging. The planned long-term monitoring of vent-fluid temperature and upflow-zone permeability across the summit-caldera of Axial Seamount will provide valuable insights into the variability of hydrothermal activity in relation to magma movement and associated changes in crustal permeability on a volcanically active spreading ridge segment. Additionally, should an eruption occur at Axial during the timeframe of this project, the proposed vent-fluid temperature measurements and analysis will provide a rare opportunity to investigate magma-hydrothermal interaction during the period of major magma movement immediately before and after the onset of an eruption.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
地球上的大多数火山都位于深海海底,作为热库,使海水沸腾并在海底产生温泉,这些深海温泉是海底许多独特生物的能量来源。对这些深海环境的了解仍然有限,随着火山热库的增长和收缩,温泉如何随时间变化,还有很多东西需要了解。里面多热位于东北太平洋的一座名为阿克西尔海山的水下火山上的阿克西尔火山是海洋中研究最深入的火山之一,科学家利用监测火山海底升降的传感器预测阿克西尔火山将在海底喷发。通过分析轴流火山温泉的温度变化,该项目将更多地了解火山内部的泉水及其深层根部在下次喷发过程中的变化。沿大洋的岩浆活动。与海底扩张相关的山脊系统占地球火山产出的大部分,相关的热液系统提供了岩石圈和水圈之间的关键联系,传递热量和营养物质,最终支持生物圈。海底热液系统主要由其地下热量调节。供应和水文特性,例如调节地壳流体流动的渗透率,对年轻洋壳内的这些海底特性与表面通风进行同步、长期监测存在相当大的困难。极大地限制了我们对与海底岩浆过程相关的热液变化的理解,该项目将通过以下方式填补这一知识空白:1)在多个高温、集中的喷口地点对热液流出物温度进行长期、高分辨率、时间序列测量。穿过轴海山的山顶破火山口,2) 使用一维多层多孔弹性模型,根据喷口流体的潮汐调节得出有效上流区渗透率的时变估计温度,以及 3) 在更广泛的背景下解释观测到的温度和渗透率变化,该背景是根据 Axial 建立的大地测量和地震监测构建的,作为海洋观测计划区域电缆阵列观测站的一部分,以及其他补充地球物理观测,例如最新状态计划对轴海山山顶破火山口的喷口流体温度和上升区渗透率进行长期监测,将为了解地震的变化提供有价值的见解。与岩浆运动相关的热液活动以及火山活动扩张脊部分地壳渗透性的相关变化此外,如果在该项目期间在轴向发生喷发,拟议的喷口流体温度测量和分析将提供难得的机会。旨在研究喷发爆发前后的主要岩浆运动期间的岩浆-热液相互作用。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力评估进行评估,认为值得支持优点和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Karen Bemis其他文献
Karen Bemis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Karen Bemis', 18)}}的其他基金
Collaborative research: Heat flow mapping and quantification at ASHES hydrothermal vent field using an observatory imaging sonar
合作研究:使用天文台成像声纳对 ASHES 热液喷口场进行热流测绘和量化
- 批准号:
1736702 - 财政年份:2017
- 资助金额:
$ 25.45万 - 项目类别:
Continuing Grant
Collaborative Research: Quantifying Hydrothermal Flow and Heat Transfer Using Acoustic Imaging in the NEPTUNE Canada Cabled Observatory at Main Endeavour Field, JdFR
合作研究:在 Main Endeavor Field 的 NEPTUNE 加拿大有线观测站使用声学成像量化热液流动和传热,JdFR
- 批准号:
1234141 - 财政年份:2012
- 资助金额:
$ 25.45万 - 项目类别:
Standard Grant
ITR: VIP (Vents Imaging and Processing): A System of Dynamic Data Analysis and Prediction for Hydrothermal Plumes
ITR:VIP(喷口成像和处理):热液羽流动态数据分析和预测系统
- 批准号:
0312272 - 财政年份:2003
- 资助金额:
$ 25.45万 - 项目类别:
Standard Grant
相似国自然基金
金伯利岩岩浆上升过程中结晶分异与去气作用的实验研究
- 批准号:42302071
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
敦煌地块早古生代花岗岩的精细岩浆过程与成分多样性成因研究
- 批准号:42302054
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
太古宙花岗质岩浆的氧逸度与水含量研究
- 批准号:42372228
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
皖南竹溪岭钨矿床岩浆-热液转换与成矿精细过程研究
- 批准号:42362016
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
冈底斯弧岩浆韵律与大陆地壳生长机制研究
- 批准号:42373045
- 批准年份:2023
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: GLOW: Basal magma ocean dynamos of early Earth, Venus, and the Moon
合作研究:GLOW:早期地球、金星和月球的基底岩浆海洋发电机
- 批准号:
2308185 - 财政年份:2023
- 资助金额:
$ 25.45万 - 项目类别:
Standard Grant
Collaborative Research: GLOW: Iron Redox Reactions in Magma Oceans and Differentiation of Rocky Planets
合作研究:GLOW:岩浆海洋中的铁氧化还原反应和岩石行星的分异
- 批准号:
2317025 - 财政年份:2023
- 资助金额:
$ 25.45万 - 项目类别:
Standard Grant
Collaborative Research: GLOW: Basal magma ocean dynamos of early Earth, Venus, and the Moon
合作研究:GLOW:早期地球、金星和月球的基底岩浆海洋发电机
- 批准号:
2308186 - 财政年份:2023
- 资助金额:
$ 25.45万 - 项目类别:
Standard Grant
Collaborative Research: Active and Passive Seismic Imaging of the Three-Dimensional Structure and Magma System beneath the Summit of Kilauea Volcano
合作研究:基拉韦厄火山顶下三维结构和岩浆系统的主动和被动地震成像
- 批准号:
2218645 - 财政年份:2023
- 资助金额:
$ 25.45万 - 项目类别:
Standard Grant
Collaborative Research: GLOW: Iron Redox Reactions in Magma Oceans and Differentiation of Rocky Planets
合作研究:GLOW:岩浆海洋中的铁氧化还原反应和岩石行星的分异
- 批准号:
2317026 - 财政年份:2023
- 资助金额:
$ 25.45万 - 项目类别:
Standard Grant