SBIR Phase I: A Blockchain-Driven, Distributed Memory, Computational Platform for Industrial Analytics
SBIR 第一阶段:区块链驱动的分布式内存工业分析计算平台
基本信息
- 批准号:2112099
- 负责人:
- 金额:$ 25.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broader impact/commercial potential of this Small Business Innovation Research (SBIR) Phase I project is to provide a novel, predictive analytics technology for industrial enterprises that require low-latency analytics insights, i.e., companies that cannot afford the kind of delayed insights that are widely present in almost all Cloud-based analytics solutions. Large manufacturing and energy enterprises are comprised of multiple plants sites spread across different geographical locations. These plants contain critical processes and equipment that are monitored using sensors and Internet of Things (IoT) devices. Predictive analytics, a key component in digital transformation, targets the analysis of large volumes of industrial data to generate insights to improve the efficiency of industrial operations, optimize processes, and reduce the life cycle costs of critical equipment and machinery. The prevailing solutions in today’s market rely on using the Cloud to consolidate data, perform analytics, and extract valuable insights. This process creates significant delays for many industrial processes that require immediate insights into their critical operations. The process is also not suitable for companies that have heightened security and privacy protocols (such as nuclear plants and defense manufacturing). The company seeks to enable companies to conduct predictive analytics on geographically distributed data silos without the need to move data from its location, thus reducing decision latency. This SBIR Phase I project proposes to develop a technology stack that leverages the blockchain to train advanced analytic algorithms and Machine Learning models across data silos in different locations without relying on the Cloud or any corporate server. Specifically, the project targets the innovative integration of the blockchain Smart Contracts with distributed memory programming frameworks like the Message Passing Interface (MPI). This integration raises several interesting research challenges one of which requires designing basic primitives similar in functionality to a Map-Reduce framework for the blockchain. The second research component revolves around the development of novel algorithmic decomposition schemes for popular Machine Learning algorithms and artificial intelligence (AI) models to facilitate their training in a decentralized manner using the blockchain. If successful, this technology may provide analytic insights faster than the Cloud. It may also significantly reduce the cost and labor associated with implementing and deploying industrial analytics. Data science teams will be provided with the agility and flexibility to modify and redeploy algorithms without having to rebuild and redesign data pipeline infrastructure to a centralized server.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该小企业创新研究 (SBIR) 第一阶段项目的更广泛影响/商业潜力是为需要低延迟分析见解的工业企业(即无法承受延迟见解的公司)提供一种新颖的预测分析技术。广泛存在于几乎所有基于云的分析解决方案中。大型制造和能源企业由分布在不同地理位置的多个工厂组成,这些工厂包含使用传感器和物联网 (IoT) 设备进行监控的关键流程和设备。预测分析是数字化的关键组成部分转型,旨在分析大量工业数据,以产生见解,以提高工业运营效率、优化流程并降低关键设备和机械的生命周期成本当今市场上流行的解决方案依赖于使用云来整合。此过程会严重延迟许多需要立即了解其关键操作的工业流程,该流程也不适合拥有呼气分析仪安全和隐私协议的公司(例如核电站和国防)。该公司致力于帮助企业进行预测分析。该 SBIR 第一阶段项目建议开发一个技术堆栈,利用区块链跨不同位置的数据孤岛训练高级分析算法和机器学习模型,从而减少决策延迟。具体来说,该项目的目标是区块链智能合约与消息传递接口(MPI)等分布式内存编程框架的创新集成。这种集成提出了一些有趣的研究挑战,其中之一需要设计基本原语。类似于第二个研究部分围绕流行的机器学习算法和人工智能(AI)模型的新型算法分解方案的开发,以促进使用区块链以分散的方式进行训练。该技术可以比云更快地提供分析见解,还可以显着降低与实施和部署工业分析相关的成本和劳动力。数据科学团队将具有修改和重新部署算法的敏捷性和灵活性,而无需重建和重新部署算法。重新设计数据管道基础设施该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nagi Gebraeel其他文献
Multi-sensor data-driven remaining useful life prediction of semi-observable systems
多传感器数据驱动的半观测系统剩余使用寿命预测
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Naipeng Li;Yaguo Lei;Nagi Gebraeel;Zhijian Wang;Xiao Cai;Pengcheng Xu;Biao Wang - 通讯作者:
Biao Wang
Remaining useful life prediction based on a multi-sensor data fusion model
基于多传感器数据融合模型的剩余使用寿命预测
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:8.1
- 作者:
Naipeng Li;Nagi Gebraeel;Yaguo Lei;Xiaolei Fang;Xiao Cai;Tao Yan - 通讯作者:
Tao Yan
Online analytics framework of sensor-driven prognosis and opportunistic maintenance for mass customization
大规模定制的传感器驱动预测和机会维护的在线分析框架
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:4
- 作者:
Tangbin Xia;Xiaolei Fang;Nagi Gebraeel;Lifeng Xi;Ershun Pan - 通讯作者:
Ershun Pan
Remaining useful life prediction of machinery under time-varying operating conditions based on a two-factor state-space model
基于二因素状态空间模型的机械时变工况剩余使用寿命预测
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:8.1
- 作者:
Naipeng Li;Nagi Gebraeel;Yaguo Lei;Linkan Bian;Xiaosheng Si - 通讯作者:
Xiaosheng Si
A reliability-and-cost-based framework to optimize maintenance planning and diverse-skilled technician routing for geographically distributed systems
基于可靠性和成本的框架,用于优化地理分布式系统的维护计划和不同技能的技术人员路由
- DOI:
10.1016/j.ress.2022.108652 - 发表时间:
2022 - 期刊:
- 影响因子:8.1
- 作者:
Guojin Si;Tangbin Xia;Nagi Gebraeel;Dong Wang;Ershun Pan;Lifeng Xi - 通讯作者:
Lifeng Xi
Nagi Gebraeel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nagi Gebraeel', 18)}}的其他基金
A Prognostic Modeling Methodology for Multistream Degradation-based Signals
基于多流退化的信号的预测建模方法
- 批准号:
1536555 - 财政年份:2015
- 资助金额:
$ 25.58万 - 项目类别:
Standard Grant
GOALI: Adaptive Degradation-Based Prognosis with Application to Vehicular Electrical Systems
GOALI:基于自适应退化的预测在车辆电气系统中的应用
- 批准号:
1200639 - 财政年份:2012
- 资助金额:
$ 25.58万 - 项目类别:
Standard Grant
Collaborative Research: Adaptive Maintenance Planning Based on Evolving Residual Life Distributions
协作研究:基于演化剩余寿命分布的自适应维护规划
- 批准号:
0856192 - 财政年份:2009
- 资助金额:
$ 25.58万 - 项目类别:
Standard Grant
CAREER: Real-Time Degradation-Based Prognostic Methodology for Improving Reliability and Maintenance Logistics
职业:基于实时退化的预测方法,用于提高可靠性和维护物流
- 批准号:
0643410 - 财政年份:2007
- 资助金额:
$ 25.58万 - 项目类别:
Standard Grant
CAREER: Real-Time Degradation-Based Prognostic Methodology for Improving Reliability and Maintenance Logistics
职业:基于实时退化的预测方法,用于提高可靠性和维护物流
- 批准号:
0738647 - 财政年份:2007
- 资助金额:
$ 25.58万 - 项目类别:
Standard Grant
相似国自然基金
热带河口特有鱼类尖鳍鲤早期生活史不同阶段的栖息地利用变化及驱动机制
- 批准号:32360917
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于现代监测的湘西惹迷洞MIS2阶段石笋碳同位素和微量元素记录重建研究
- 批准号:42371164
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
高层钢结构建模-优化-深化的跨阶段智能设计方法
- 批准号:52308142
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
低碳环境下考虑阶段间运输混合流水车间成组调度的协同智能优化方法
- 批准号:72301026
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
马尾松和粘盖乳牛肝菌预共生阶段互作机制研究
- 批准号:32360372
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
SBIR Phase II: A Blockchain Ecosystem for Encrypting Real World Data and Developing Artificial Intelligence to Optimize Pharmacy Prior Authorization
SBIR 第二阶段:用于加密现实世界数据和开发人工智能以优化药房预授权的区块链生态系统
- 批准号:
2200163 - 财政年份:2023
- 资助金额:
$ 25.58万 - 项目类别:
Cooperative Agreement
SBIR Phase II: A Platform for Health Care Data Integration Using Blockchain and Artificial Intelligence
SBIR 第二阶段:使用区块链和人工智能的医疗保健数据集成平台
- 批准号:
2304102 - 财政年份:2023
- 资助金额:
$ 25.58万 - 项目类别:
Cooperative Agreement
SBIR Phase I: Hybrid Blockchain to enable safe and transparent distribution of perishable goods
SBIR 第一阶段:混合区块链,实现易腐烂货物的安全和透明分配
- 批准号:
2112078 - 财政年份:2022
- 资助金额:
$ 25.58万 - 项目类别:
Standard Grant
SBIR Phase I: Blockchain for Supply Chain
SBIR 第一阶段:供应链区块链
- 批准号:
2112262 - 财政年份:2022
- 资助金额:
$ 25.58万 - 项目类别:
Standard Grant
SBIR Phase I: A Platform for Health Care Data Integration Using Blockchain and Artificial Intelligence
SBIR 第一阶段:使用区块链和人工智能的医疗保健数据集成平台
- 批准号:
2125909 - 财政年份:2022
- 资助金额:
$ 25.58万 - 项目类别:
Standard Grant