RAPID/Collaborative Research: Agent-based Modeling Toward Effective Testing and Contact-tracing During the COVID-19 Pandemic

快速/协作研究:基于代理的建模,以在 COVID-19 大流行期间实现有效的测试和接触者追踪

基本信息

  • 批准号:
    2027990
  • 负责人:
  • 金额:
    $ 16.11万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-05-01 至 2023-04-30
  • 项目状态:
    已结题

项目摘要

This Rapid Response Research (RAPID) grant will support research that will improve our understanding of the spread of COVID-19 and potential mitigation strategies at the city level, promoting scientific progress and contributing to national health and prosperity. As COVID-19 continues to spread, the effectiveness of different testing strategies and predictive models are brought into question. Testing strategies include the use of drive-through facilities that have found success elsewhere but may prove impractical for elderly and low-income sections of the population, and the use of hospitals, which adds further burden to the healthcare system and may carry the risk of higher contagion. Mathematical models that forecast the spread of the disease are of paramount importance to inform local and global policy makers on the course of action that should be undertaken to mitigate the outbreak and give relief to the population. However, such models are often confounded by the absence of symptoms in early stages, complex mobility patterns, and limited testing resources. This award supports fundamental research toward a mathematical model that will overcome these confounding factors, through advancements in dynamics and control. By explicitly modeling social and mobility constraints, this research will help increase the general well-being of communities and reduce disparities across the population. The model will afford the simulation of critical what-if scenarios and will include the evaluation of different testing policies and mitigation actions, thereby constituting a valuable support to policy makers involved in the containment and eradication of the epidemic. Research outcomes will be presented to the public, including health professionals and authorities to inform public policy in the ongoing crisis.The research will respond to COVID-19 outbreak in real time through a fine-resolution agent-based and data-driven model that aims at providing unprecedented insight in the spread and potential mitigation strategies of this virus at the city level. The approach will afford thorough what-if analysis on the effectiveness of ongoing and potential mitigation strategies. The agent-based model will include COVID-19 specific features, such as the type and timing of testing, asymptomatic occurrence, and hospitalization stages. The framework will be grounded in publicly available census and geo-referred data from New Rochelle, New York. Social behavior associated with rational and irrational factors will be included in the mobility patterns of the agent-based model at multiple spatial and temporal scales to increase the granularity of the predictions. Network-theoretic and data-driven control strategies will inform enhanced testing protocols involving active trials on the basis of available contact databases collected at testing sites.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这笔快速响应研究 (RAPID) 拨款将支持研究,以提高我们对 COVID-19 传播和城市层面潜在缓解策略的了解,促进科学进步并为国民健康和繁荣做出贡献。随着 COVID-19 的继续传播,不同测试策略和预测模型的有效性受到质疑。测试策略包括使用在其他地方取得了成功但可能对老年人和低收入群体来说不切实际的免下车设施,以及使用医院,这进一步增加了医疗保健系统的负担,并可能带来风险传染性更高。预测疾病传播的数学模型对于告知当地和全球政策制定者应采取哪些行动来减轻疫情并为民众提供救济至关重要。然而,此类模型常常因早期阶段没有症状、复杂的移动模式和有限的测试资源而令人困惑。该奖项支持数学模型的基础研究,该模型将通过动力学和控制方面的进步克服这些混杂因素。通过明确地模拟社会和流动性限制,这项研究将有助于提高社区的总体福祉并减少人口之间的差距。该模型将模拟关键的假设情景,并将包括对不同检测政策和缓解行动的评估,从而为参与遏制和根除疫情的政策制定者提供宝贵的支持。研究成果将向公众展示,包括卫生专业人员和当局,以便为当前危机中的公共政策提供信息。该研究将通过基于精细代理和数据驱动的模型实时应对 COVID-19 爆发,该模型旨在提供有关该病毒在城市一级的传播和潜在缓解策略的前所未有的见解。该方法将对正在进行的和潜在的缓解策略的有效性进行彻底的假设分析。基于代理的模型将包括 COVID-19 的特定特征,例如检测的类型和时间、无症状发生情况和住院阶段。该框架将基于纽约州新罗谢尔公开的人口普查和地理参考数据。 与理性和非理性因素相关的社会行为将被包含在基于代理的模型在多个空间和时间尺度上的移动模式中,以增加预测的粒度。网络理论和数据驱动的控制策略将为增强的测试方案提供信息,其中涉及基于在测试站点收集的可用联系数据库的主动试验。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和技术进行评估,被认为值得支持。更广泛的影响审查标准。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Exploring a COVID‐19 Endemic Scenario: High‐Resolution Agent‐Based Modeling of Multiple Variants
探索 COVID-19 流行情况:基于高分辨率代理的多变体建模
  • DOI:
    10.1002/adts.202200481
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Truszkowska, Agnieszka;Zino, Lorenzo;Butail, Sachit;Caroppo, Emanuele;Jiang, Zhong‐Ping;Rizzo, Alessandro;Porfiri, Maurizio
  • 通讯作者:
    Porfiri, Maurizio
Quantifying the role of the COVID-19 pandemic in the 2020 U.S. presidential elections
量化 COVID-19 大流行在 2020 年美国总统选举中的作用
  • DOI:
    10.1140/epjs/s11734-021-00299-3
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    De Lellis, Pietro;Ruiz Marín, Manuel;Porfiri, Maurizio
  • 通讯作者:
    Porfiri, Maurizio
The Impact of Deniers on Epidemics: A Temporal Network Model
否认者对流行病的影响:时间网络模型
  • DOI:
    10.1109/lcsys.2022.3219772
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Zino, Lorenzo;Rizzo, Alessandro;Porfiri, Maurizio
  • 通讯作者:
    Porfiri, Maurizio
How adherence to public health measures shapes epidemic spreading: A temporal network model
遵守公共卫生措施如何影响流行病传播:时间网络模型
Analysis of lockdown perception in the United States during the COVID-19 pandemic
COVID-19 大流行期间美国的封锁认知分析
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Maurizio Porfiri其他文献

Synthesis of electrical networks interconnecting PZT actuators to damp mechanical vibrations
综合互连 PZT 执行器的电气网络以抑制机械振动
Mixed Reality Environment and High-Dimensional Continuification Control for Swarm Robotics
群体机器人的混合现实环境和高维连续控制
  • DOI:
    10.48550/arxiv.2310.01573
  • 发表时间:
    2023-10-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gian Carlo Maffettone;Lorenzo Liguori;Eduardo Palermo;M. D. Bernardo;Maurizio Porfiri
  • 通讯作者:
    Maurizio Porfiri
Adapting to the Abyss: Passive Ventilation in the Deep-Sea Glass Sponge Euplectella aspergillum.
适应深渊:深海玻璃海绵 Euplectella aspergillum 的被动通风。
  • DOI:
    10.1103/physrevlett.132.208402
  • 发表时间:
    2024-05-16
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    G. Falcucci;G. Amati;Gino Bella;A. Facci;V. Krastev;G. Polverino;S. Succi;Maurizio Porfiri
  • 通讯作者:
    Maurizio Porfiri
Treatment of material discontinuity in two meshless local Petrov–Galerkin (MLPG) formulations of axisymmetric transient heat conduction
轴对称瞬态热传导的两种无网格局部 Petrov Galerkin (MLPG) 公式中材料不连续性的处理
A master stability function for stochastically coupled chaotic maps
随机耦合混沌映射的主稳定性函数
  • DOI:
    10.1209/0295-5075/96/40014
  • 发表时间:
    2011-11-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Maurizio Porfiri
  • 通讯作者:
    Maurizio Porfiri

Maurizio Porfiri的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Maurizio Porfiri', 18)}}的其他基金

EAGER/Collaborative Research: Switching Structures at the Intersection of Mechanics and Networks
EAGER/协作研究:力学和网络交叉点的切换结构
  • 批准号:
    2306824
  • 财政年份:
    2023
  • 资助金额:
    $ 16.11万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Switching Structures at the Intersection of Mechanics and Networks
EAGER/协作研究:力学和网络交叉点的切换结构
  • 批准号:
    2306824
  • 财政年份:
    2023
  • 资助金额:
    $ 16.11万
  • 项目类别:
    Standard Grant
LEAP-HI: Understanding and Engineering the Ecosystem of Firearms: Prevalence, Safety, and Firearm-Related Harms
LEAP-HI:了解和设计枪支生态系统:流行性、安全性和枪支相关危害
  • 批准号:
    1953135
  • 财政年份:
    2020
  • 资助金额:
    $ 16.11万
  • 项目类别:
    Standard Grant
How and Why Fish School: An Information-theoretic Analysis of Coordinated Swimming
鱼群的方式和原因:协调游泳的信息论分析
  • 批准号:
    1901697
  • 财政年份:
    2019
  • 资助金额:
    $ 16.11万
  • 项目类别:
    Standard Grant
Network-based Modeling of Infectious Disease Epidemics in a Mobile Population: Strengthening Preparedness and Containment
基于网络的流动人口传染病流行模型:加强防备和遏制
  • 批准号:
    1561134
  • 财政年份:
    2016
  • 资助金额:
    $ 16.11万
  • 项目类别:
    Standard Grant
Transforming Robot-mediated Telerehabilitation: Citizen Science for Rehabilitation
改变机器人介导的远程康复:康复公民科学
  • 批准号:
    1604355
  • 财政年份:
    2016
  • 资助金额:
    $ 16.11万
  • 项目类别:
    Standard Grant
EAGER: Reliable Data from Heterogeneous Groups of Citizen Scientists
EAGER:来自不同公民科学家群体的可靠数据
  • 批准号:
    1644828
  • 财政年份:
    2016
  • 资助金额:
    $ 16.11万
  • 项目类别:
    Standard Grant
CDS&E: Modeling the Zebrafish Model Organism Toward Reducing, Refining, and Replacing Animal Experiments
CDS
  • 批准号:
    1505832
  • 财政年份:
    2015
  • 资助金额:
    $ 16.11万
  • 项目类别:
    Standard Grant
EAGER: Dynamics of collaboration between humans and engineered systems: system design for collective expertise
EAGER:人类与工程系统之间的协作动态:集体专业知识的系统设计
  • 批准号:
    1547864
  • 财政年份:
    2015
  • 资助金额:
    $ 16.11万
  • 项目类别:
    Standard Grant
Causal Relationships Underlying the Collective Dynamic Behavior of Swarms
群体集体动态行为背后的因果关系
  • 批准号:
    1433670
  • 财政年份:
    2014
  • 资助金额:
    $ 16.11万
  • 项目类别:
    Standard Grant

相似国自然基金

基于交易双方异质性的工程项目组织间协作动态耦合研究
  • 批准号:
    72301024
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
面向协作感知车联网的信息分发时效性保证关键技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于自主性边界的人机协作-对抗混合智能控制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: RAPID: A perfect storm: will the double-impact of 2023/24 El Nino drought and forest degradation induce a local tipping-point onset in the eastern Amazon?
合作研究:RAPID:一场完美风暴:2023/24厄尔尼诺干旱和森林退化的双重影响是否会导致亚马逊东部地区出现局部临界点?
  • 批准号:
    2403882
  • 财政年份:
    2024
  • 资助金额:
    $ 16.11万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
  • 批准号:
    2425429
  • 财政年份:
    2024
  • 资助金额:
    $ 16.11万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
  • 批准号:
    2425431
  • 财政年份:
    2024
  • 资助金额:
    $ 16.11万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
  • 批准号:
    2427233
  • 财政年份:
    2024
  • 资助金额:
    $ 16.11万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: A perfect storm: will the double-impact of 2023/24 El Nino drought and forest degradation induce a local tipping-point onset in the eastern Amazon?
合作研究:RAPID:一场完美风暴:2023/24厄尔尼诺干旱和森林退化的双重影响是否会导致亚马逊东部地区出现局部临界点?
  • 批准号:
    2403883
  • 财政年份:
    2024
  • 资助金额:
    $ 16.11万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了