STTR Phase I: An AI-Enhanced Angiographic System to Guide Endovascular Treatment of Intracranial Aneurysms
STTR 第一阶段:人工智能增强血管造影系统指导颅内动脉瘤的血管内治疗
基本信息
- 批准号:2111865
- 负责人:
- 金额:$ 25.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-15 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broader impact of this Small Business Technology Transfer (STTR) Phase I project falls within the larger scope of expanding artificial intelligence (AI) methods into health care applications. The application is focused on image guided endovascular surgical procedures for intracranial aneurysms (IA), which may cause subarachnoid hemorrhage, the most devastating type of hemorrhagic stroke. The current trends in treatment of aneurysms show that endovascular approach has become the mainstay procedure due to reduced surgical complications when compared with open skull surgery. Despite tremendous technological advances in devices and surgical instrumentation, as many as 30% of these lesions are not completely healed after the first surgical intervention, exposing patients to additional risks for complications due to multiple surgical procedures. The AI autonomous solution developed in this project will be the one of the first applications that provides intraoperative prognosis for six-month healing of an aneurysm after each surgical step to allow surgical adjustments, reducing the risk for ruptures and re-treatments from 30% to an estimated 5% and creating savings for the $65,000 in retreatments (roughly $1.95 B annually in the U.S.).This Small Business Technology Transfer (STTR) Phase I project will aim to develop a comprehensive and autonomous AI method that will provide intraoperative prognosis of complete healing for an IA at six months. In current clinical practice, neuro-interventionalists cannot guarantee successful healing of intracranial aneurysms immediately post-device placement. Treated patients have to wait a minimum of 3-6 months before their aneurysm is reassessed on medical imaging and the clinician decides if re-treatment is needed. During this critical time, patients are still at risk of rupture. In addition, re-treatments have higher risk to the patient as well as bear a financial burden on hospitals and insurance companies. The proposed algorithms will be fully integrated with surgical equipment and will allow dynamic angiographic analysis to derive physics-based parameters related to the nature of blood flow inside the aneurysm sac. These parameters are combined with a machine learning algorithm to provide a prediction as to whether the treatment is sufficient for a full healing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该小企业技术转让 (STTR) 第一阶段项目的更广泛影响属于将人工智能 (AI) 方法扩展到医疗保健应用的更大范围。该应用的重点是图像引导的颅内动脉瘤(IA)血管内手术,这可能会导致蛛网膜下腔出血,这是最具破坏性的出血性中风类型。目前动脉瘤治疗的趋势表明,与开颅手术相比,血管内入路由于手术并发症减少而成为主要手术方式。尽管设备和手术器械技术取得了巨大进步,但多达 30% 的病变在第一次手术干预后并未完全愈合,使患者因多次手术而面临额外的并发症风险。该项目中开发的人工智能自主解决方案将成为首批应用程序之一,在每个手术步骤后提供动脉瘤六个月愈合的术中预后,以便进行手术调整,将破裂和重新治疗的风险从 30% 降低到预计节省 5%,并节省 65,000 美元的再治疗费用(在美国每年约为 1.95 美元)。这个小型企业技术转让 (STTR) 第一阶段项目将旨在开发一个全面的、自主人工智能方法将为六个月后的 IA 完全愈合提供术中预后。在目前的临床实践中,神经介入医生不能保证在装置放置后立即成功治愈颅内动脉瘤。接受治疗的患者必须等待至少 3-6 个月,然后才能通过医学影像重新评估其动脉瘤,并由临床医生决定是否需要重新治疗。在这个关键时刻,患者仍然面临着破裂的风险。此外,再次治疗会给患者带来更高的风险,也会给医院和保险公司带来经济负担。所提出的算法将与手术设备完全集成,并允许动态血管造影分析得出与动脉瘤囊内血流性质相关的基于物理的参数。这些参数与机器学习算法相结合,可预测治疗是否足以完全康复。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mohammad Mahdi Shiraz Bhurwani其他文献
Mohammad Mahdi Shiraz Bhurwani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mohammad Mahdi Shiraz Bhurwani', 18)}}的其他基金
SBIR Phase II: An AI-Enhanced Angiographic System to Guide Endovascular Treatment of Intracranial Aneurysms
SBIR II 期:人工智能增强血管造影系统指导颅内动脉瘤的血管内治疗
- 批准号:
2304388 - 财政年份:2023
- 资助金额:
$ 25.56万 - 项目类别:
Cooperative Agreement
相似国自然基金
热带河口特有鱼类尖鳍鲤早期生活史不同阶段的栖息地利用变化及驱动机制
- 批准号:32360917
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于现代监测的湘西惹迷洞MIS2阶段石笋碳同位素和微量元素记录重建研究
- 批准号:42371164
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
高层钢结构建模-优化-深化的跨阶段智能设计方法
- 批准号:52308142
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
低碳环境下考虑阶段间运输混合流水车间成组调度的协同智能优化方法
- 批准号:72301026
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
马尾松和粘盖乳牛肝菌预共生阶段互作机制研究
- 批准号:32360372
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
STTR Phase I: Exploring Artificial Intelligence (AI)-Enabled Skills Data For Education-to-Employment Transitions and Career Support
STTR 第一阶段:探索人工智能 (AI) 支持的技能数据,以实现从教育到就业的过渡和职业支持
- 批准号:
2112276 - 财政年份:2022
- 资助金额:
$ 25.56万 - 项目类别:
Standard Grant
STTR Phase I: Camera-Based Multimodal AI for Health Monitoring
STTR 第一阶段:基于摄像头的多模态人工智能,用于健康监测
- 批准号:
2136728 - 财政年份:2022
- 资助金额:
$ 25.56万 - 项目类别:
Standard Grant
STTR Phase II: Artificial Intelligence (AI)-based Development of Neutralizing Antibodies for SARS-CoV-2
STTR 第二阶段:基于人工智能 (AI) 的 SARS-CoV-2 中和抗体开发
- 批准号:
2136860 - 财政年份:2022
- 资助金额:
$ 25.56万 - 项目类别:
Cooperative Agreement
STTR Phase I: Using AI to develop a red blood cell health index for the monitoring of sickle cell disease
STTR 第一阶段:利用人工智能开发红细胞健康指数,用于监测镰状细胞病
- 批准号:
2112027 - 财政年份:2021
- 资助金额:
$ 25.56万 - 项目类别:
Standard Grant
STTR Phase I: Artificial Intelligence Tool to Optimize Organ Transplantation Outcomes (Transplant-AI)
STTR 第一阶段:优化器官移植结果的人工智能工具(Transplant-AI)
- 批准号:
2014827 - 财政年份:2020
- 资助金额:
$ 25.56万 - 项目类别:
Standard Grant