I-Corps: Advanced Truck Detection with Lidar Technology
I-Corps:采用激光雷达技术的先进卡车检测
基本信息
- 批准号:2140306
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broader impact/commercial potential of this I-Corps project is to enable transportation agencies to gather critical freight movement data using passively collected and anonymous sensors. Anonymity is of key importance for the successful collection of transportation datasets, especially in the competitive freight industry. Traditional approaches such as image-based detection, cell phone tracking, or other visual monitoring (license plate tracking or logo recognition) can violate privacy considerations and hinder widespread freight data collection. Such data collection is necessary for travel demand modeling and forecasting as well as for infrastructure planning, operations, and maintenance for roadways, bridges, and freight terminals. The market for this advanced truck detection device includes public transportation agencies at the city, county, state, and national levels, traffic sensing device manufacturers, transportation consulting companies, and freight terminal operators. While current sensors may distinguish trucks from cars or trucks by axle configuration, there are no non-pavement intrusive technologies currently able to predict the body-type of the vehicle in enough detail to indicate freight carried. Agencies tasked with data collection often must rely on time-consuming periodic surveys to estimate where and what freight is moving on their highway system, making it difficult to produce timely project cost-benefit and resilience/impact analyses. Commercial applications can be extended to large distribution centers, mining areas, rail yards or other intermodal terminals and ports.This I-Corps project will further develop a system for low-cost, anonymous, and pavement-nonintrusive advanced truck detection by developing a side-fire (perpendicular to traffic flow) Lidar (Light Detection and Ranging)-based traffic detection and classification system. In side-fire configuration, Lidar sensors capture the profile of the truck (tractor and trailer/semi-trailer) which can be classified by body type with high-resolution while maintaining the anonymity of the driver, license/registration, and company. The innovation of this technology includes: 1) novel configuration and application of off-the-shelf Lidar technology for traffic detection, 2) coupling of technology with machine learning algorithms for feature detection, extraction, and classification with the aim of high-resolution truck classification, and 3) implementation of classification outputs in a data dashboard for real time and historical review. This novel truck detection solution using Lidar can enable a fundamental shift in how freight data is collected, especially by public transportation agencies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该I-Corps项目的更广泛的影响/商业潜力是使运输机构能够使用被动收集和匿名传感器收集关键的货运数据。 对于成功收集运输数据集,尤其是在竞争性货运行业中,匿名至关重要。 传统方法,例如基于图像的检测,手机跟踪或其他视觉监控(车牌跟踪或徽标识别)可能会违反隐私注意事项,并阻碍广泛的货运数据收集。 此类数据收集对于旅行需求建模和预测以及对道路,桥梁和货运终端的基础设施计划,运营和维护所必需的。 该高级卡车检测设备的市场包括城市,县,州和国家级别的公共交通机构,交通传感设备制造商,交通咨询公司和货运终端运营商。 尽管当前的传感器可以通过轴配置将卡车与汽车或卡车区分开,但目前没有非途径侵入技术能够以足够的细节来预测车辆的车身类型,以表明携带货物。 负责数据收集的代理商通常必须依靠耗时的定期调查来估算其高速公路系统上的货物的何处和货物,这使得很难及时产生及时的项目成本效益以及弹性/影响力分析。 商业应用可以扩展到大型分销中心,采矿区,铁路场或其他模式码头和端口。本I-Corps项目将进一步开发一个用于低成本,匿名和路面非触觉的高级卡车检测系统,通过开发侧向火灾(垂直到交通流动流动流量)LIDAR(LIDAR)LIDAR(轻度检测和范围)的交通流量系统。 在侧射配置中,激光雷达传感器捕获了卡车的轮廓(拖拉机和拖车/半拖车),可以按身体类型对高分辨率进行分类,同时保持驾驶员的匿名性,许可/注册和公司的匿名性。 该技术的创新包括:1)新的配置和用于交通检测的现成的激光雷达技术的新型配置和应用,2)技术与机器学习算法耦合,用于特征检测,提取和分类,目的是高分辨率卡车分类,以及3)在数据仪表板中实施分类措施,以实现真实的时间和历史审查。这种使用LiDAR的新型卡车检测解决方案可以使收集货运数据的基本转变,尤其是公共交通机构。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的影响来通过评估来支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sarah Hernandez其他文献
Borderline Personality Features in Inpatients with Bipolar Disorder: Impact on Course and Machine Learning Model Use to Predict Rapid Readmission
双相情感障碍住院患者的边缘人格特征:对课程和机器学习模型用于预测快速再入院的影响
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:1.9
- 作者:
H. Salem;A. Ruiz;Sarah Hernandez;K. Wahid;Fei Cao;Brandi Karnes;S. Beasley;M. Sanches;Elaheh Ashtari;T. Pigott - 通讯作者:
T. Pigott
Prediction of waterborne freight activity with Automatic identification System using Machine learning
- DOI:
10.1016/j.cie.2024.110757 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:
- 作者:
Sanjeev Bhurtyal;Hieu Bui;Sarah Hernandez;Sandra Eksioglu;Magdalena Asborno;Kenneth N. Mitchell;Marin Kress - 通讯作者:
Marin Kress
Current status of inclusion of black participants in neuropsychological studies: A scoping review and call to action
将黑人参与者纳入神经心理学研究的现状:范围界定审查和行动呼吁
- DOI:
10.1080/13854046.2021.2019314 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
C. Ray;Kyr Hudson Mariouw;Kendra M Anderson;E. George;Natalie Bisignano;Sarah Hernandez;V. Montgomery - 通讯作者:
V. Montgomery
Electric Vehicle Usage Patterns in Multi-Vehicle Households in the US: A Machine Learning Study
美国多车家庭的电动汽车使用模式:机器学习研究
- DOI:
10.3390/su16125200 - 发表时间:
2024 - 期刊:
- 影响因子:3.9
- 作者:
Vuban Chowdhury;S. Mitra;Sarah Hernandez - 通讯作者:
Sarah Hernandez
Reliability Generalization of the Triarchic Psychopathy Measure.
三元精神病测量的可靠性概括。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:3.4
- 作者:
Brianna N Davis;R. B. Spivey;Sarah Hernandez;Hadley McCartin;Tia Tourville;Laura E. Drislane - 通讯作者:
Laura E. Drislane
Sarah Hernandez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sarah Hernandez', 18)}}的其他基金
CAREER: Towards Unbiased Long-Range Freight Planning Through Passive-Sensors and Workforce Diversity
职业生涯:通过无源传感器和劳动力多元化实现公正的远程货运规划
- 批准号:
2042870 - 财政年份:2021
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
相似国自然基金
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
新一代重要有机酸反式乌头酸的先进生物制造技术
- 批准号:22338012
- 批准年份:2023
- 资助金额:230 万元
- 项目类别:重点项目
关联锂离子电池正极动力学-热力学与构效-失效机制的先进同步辐射研究
- 批准号:12375328
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
先进运行模式中稳态远轴内部输运垒的调控机理研究
- 批准号:12375233
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
含Re、Ru先进镍基单晶高温合金中TCP相成核—生长机理的原位动态研究
- 批准号:52301178
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
SBIR Phase II: Innovative Glass Inspection for Advanced Semiconductor Packaging
SBIR 第二阶段:先进半导体封装的创新玻璃检测
- 批准号:
2335175 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Cooperative Agreement
STTR Phase I: Advanced Lithium Metal Anodes for Solid-State Batteries
STTR 第一阶段:用于固态电池的先进锂金属阳极
- 批准号:
2335454 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
EvaluATE: The Evaluation Hub for Advanced Technological Education
EvaluATE:先进技术教育评估中心
- 批准号:
2332143 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Highly Ce3+ - doped Glass Material for Advanced Photonic Devices
用于先进光子器件的高掺杂 Ce3 玻璃材料
- 批准号:
2310284 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant