Highly Ce3+ - doped Glass Material for Advanced Photonic Devices

用于先进光子器件的高掺杂 Ce3 玻璃材料

基本信息

  • 批准号:
    2310284
  • 负责人:
  • 金额:
    $ 60万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-02-01 至 2028-01-31
  • 项目状态:
    未结题

项目摘要

PART 1: NON-TECHNICAL SUMMARYTrivalent cerium (Ce(III)) doped optical materials possess extraordinary optical and physical properties and currently represent the state-of-art materials for advanced optical devices that are used in medical imaging, high-energy particles and radiation visualization, measurement time of particles arrival in colliding beam experiments, neutrino and dark matter detectors, and optical elements resistant to high levels ionizing radiation for critical infrastructure and communication, and illumination. Presently, most existing highly Ce(III)-doped materials for the above-mentioned applications are based on crystalline solids (were the atoms are well ordered within the structure) because of their ability to accommodate large concentrations of the Ce(III) ions. However, the fabrication processes for these highly doped crystals are complex, time-consuming, and expensive, particularly when compared with similar composition glasses (where atoms are short-range ordered but disordered within long range). Similarly, applications of such crystals is also restricted by small size, brittleness, and change in physical properties with orientation. All these challenges can be addressed by use of highly Ce(III)-doped silicate glasses that offer improvements in mechanical properties, chemical durability and thermal stability compared ot their crystalline counerparts and can be made into large-size and complex shapes (including drawn into optical fibers, extensively used in current photonic systems). However, the doping levels of Ce(III) in silicate glass systems are typically very low due to poor stability of Ce(III) ions, limiting their range of applications. The aim of this research is to enhance the stability of these cerium ions within silicate glass to achieve unprecedented levels of doping. Novel synthesis procedures of Ce(III)-doped boron-aluminosilicate glass will be employed to understand and explore factors influencing stability of Ce(III) ions. The effect of Ce(III) doping level and synthesis conditions on physical, optical and luminescent properties of boron-aluminosilicate glasses will be systematically studied. The gained knowledge will aid in developing cost-efficient and robust highly Ce(III) -doped materials for advanced photonic applications. The project will provide an interdisciplinary training experience to graduate students in material and optical sciences. The investigators and graduate students involved in this project will further emphasizes educational outreach, aiming to enhance interest in material and optical sciences by offering research experiences and mentorship to undergraduate students. PART 2: TECHNICAL SUMMARYThe planned research is centered on pushing the current doping limits of Ce(III)-doped materials well beyond the 1 mol.% of Ce2O3 range currently achievable. High doping levels of Ce(III) ions in optical materials are usually required for low cost, size, weight, and power photonic devices and have been mostly achieved with crystalline materials. However, such heavily doped crystals cannot be produced in bulk or have too expensive and time-consuming manufacturing processes. Compared to the above, silicate glasses are an ideal host for Ce(III) ions with advantages of low-cost, ease of production and scaling, melt-cast into multiple shapes, and would have favorable mechanical properties, chemical durability and thermal stability. Although numerous efforts have been made to incorporate Ce(III) into robust silicate glass systems, the doping level of Ce(III) is still limited to less than 3.7×10^20 Ce(III) ions/cm3 before Ce(IV) appears, making Ce(III)-doped glass material non-competitive against crystals. To obtain highly Ce(III)-doped boron-aluminosilicate glass (10^22 ions/cm3) a systematic study of the effects of synthesis conditions, precursor chemicals and additives on cerium (III) to cerium (IV) transition and the glass physical properties is proposed. Additional focus is placed on the characterization of the developed glass materials, through study of optical, spectral, luminescence, magneto-optical and scintillation properties, defect formation under gamma rays, as well as energy transfer in Tb (III), Eu(III) and Mn(II,IV) co-doped samples are being studied to evaluate the performance. This research approach provides an excellent opportunity for graduate students to learn cutting edge experimental techniques and theoretical methods used in material and optical research and gain a broader understanding of how material and optical sciences can address some of society’s major challenges, e.g., affordable medical services, nuclear waste management and security.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
第1部分:非技术汇总瓷器(CE(iii))掺杂的光学材料具有非凡的光学和物理特性,目前代表了用于先进的光学设备的最新材料,这些材料用于高级光学设备,用于医学成像,高能粒子和辐射可视化,颗粒的测量范围,并在相处的范围内,并且在相处的范围内,并且在相处的范围内,并且在相处的范围内,并且在核对范围内,并且在核电的范围内,并且对数量的范围进行了临界,并且对数量的范围进行了临界,并且差异范围的范围,并且差异范围。基础设施和沟通以及照明。目前,上述应用的大多数现有高度CE(III)载材材料基于结晶固体(由于结构内有很好的序列),因为它们可以容纳大量的CE(III)离子。但是,这些高度掺杂的晶体的制造过程是复杂的,耗时且昂贵的,尤其是与类似的成分玻璃(在原子中有序有序但在远距离内无序)相比,尤其是在远距离的情况下进行的。同样,此类晶体的应用也受到小尺寸,脆性和随着定向的变化的限制。所有这些挑战都可以通过使用高CE(III)的硅胶眼镜来解决,从而提供了机械性能,化学耐用性和热稳定性的改进,并可以将其结晶剂对应物进行比较,并可以制成大尺寸和复杂的形状(包括在当前光子系统中广泛使用的光纤纤维中)。但是,由于CE(III)离子的稳定性较差,因此CE(III)的掺杂水平(III)通常非常低,从而限制了它们的应用范围。这项研究的目的是增强这些元素在硅玻璃内的稳定性,以达到前所未有的掺杂水平。 CE(III)的新型合成程序(III)将采用载硼铝玻璃来理解和探索因素影响CE(III)离子的稳定性。 CE(III)掺杂水平和合成条件对硼 - 铝合物玻璃的物理,光学和发光特性的影响将是系统地研究的。获得的知识将有助于开发用于高级光子应用的具有成本效益和稳健的高度CE(III)材料。该项目将为材料和光学科学的研究生提供跨学科的培训经验。参与该项目的研究人员和研究生将进一步强调教育宣传,旨在通过向本科生提供研究经验和心态来增强对材料和光学科学的兴趣。第2部分:技术总结计划的研究集中在推动CE(III)掺杂材料的当前掺杂限制,远远超出了目前可实现的CE2O3范围的1摩尔。低成本,尺寸,重量和功率光子设备通常需要光学材料中的高掺杂水平(III)离子,并且主要用晶体材料实现。但是,这种浓郁的掺杂晶体不能批量产生,也不能具有太昂贵且耗时的制造工艺。与上述相比,有机硅玻璃是CE(III)离子的理想宿主,具有低成本,易于生产和缩放,融化成多种形状,并且具有良好的机械性能,化学耐用性和热稳定性。尽管已经做出了许多努力将CE(III)纳入可靠的硅胶玻璃系统中,但CE(III)的掺杂水平仍然限于CE(IV)之前的CE(III)离子/CM3小于3.7×10^20 CE(III),因此CE(III)使CE(III)载有非竞争力的玻璃材料。为了获得高度CE(III)的硼氧铝硅酸盐玻璃(10^22离子/cm3),对合成条件的影响,前体化学物质和添加剂(III)(III)对瓷器(IV)过渡和玻璃物理特性的影响。通过研究发达玻璃材料的表征,通过研究光谱,光谱,发光,磁性和闪烁特性,伽玛射线下的缺陷形成以及TB(III),EU(III)和MN(III)和MN(II,II,IV)中的能量转移,以评估绩效。这种研究方法为研究生提供了一个绝佳的机会,可以学习材料和光学研究中使用的尖端实验技术和理论方法,并对物质和光学科学如何应对社会的某些主要挑战,例如负担得起的医疗服务,核废料管理和安全性,这反映了NSF的法定任务和良好的支持者的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Viktor Dubrovin其他文献

Viktor Dubrovin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Ce3+掺杂蓝光激发的硅酸盐长余辉发光材料的结构设计及发光机理研究
  • 批准号:
    12264021
  • 批准年份:
    2022
  • 资助金额:
    32.00 万元
  • 项目类别:
    地区科学基金项目
Ce3+掺杂蓝光激发的硅酸盐长余辉发光材料的结构设计及发光机理研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于间隙位置工程的Ce3+掺杂氮(氧)化物发光材料设计合成及其激光照明应用基础研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于间隙位置工程的Ce3+掺杂氮(氧)化物发光材料设计合成及其激光照明应用基础研究
  • 批准号:
    52202194
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
稀土离子Ce3+掺杂晶体的电子自旋与原子核自旋动力学
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Ce添加フッ化硫化物にみられる特異な深赤色-近赤外発光のメカニズム解明
阐明在掺杂 Ce 的氟硫化物中观察到的独特深红-近红外发射的机制
  • 批准号:
    23K13551
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
太陽電池用ダウンシフト蛍光体の創製および発光メカニズムの解明
太阳能电池用降频荧光粉的研制及发光机理的阐明
  • 批准号:
    21J12142
  • 财政年份:
    2021
  • 资助金额:
    $ 60万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Thermodynamics and kinetics of CO2 splitting with the redox system Ce3+/Ce4+ at high temperatures
氧化还原系统Ce3/Ce4在高温下CO2分解的热力学和动力学
  • 批准号:
    433306682
  • 财政年份:
    2019
  • 资助金额:
    $ 60万
  • 项目类别:
    Research Grants
Investigation of thermal quenching process in Eu2+ or Ce3+-doped phosphors for white LED applications
白光 LED 应用中 Eu2 或 Ce3 掺杂荧光粉的热淬火工艺研究
  • 批准号:
    16K05934
  • 财政年份:
    2016
  • 资助金额:
    $ 60万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of persistent luminescence phosphors utilizing light-induced electron transfer in Ce3+-doped garnet materials
利用 Ce3 掺杂石榴石材料中的光诱导电子转移开发持久发光荧光粉
  • 批准号:
    25810136
  • 财政年份:
    2013
  • 资助金额:
    $ 60万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了