Rydberg Exciton in Atomically Thin Semiconductor for On-chip Quantum Optoelectronics
用于片上量子光电器件的原子薄半导体中的里德伯激子
基本信息
- 批准号:2139692
- 负责人:
- 金额:$ 41.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Rydberg atom refers to a high energy atom with a size much larger than the atom at its lowest energy state. The large size of the Rydberg atoms enables strong interactions among themselves that can be exploited for quantum information science. Light excitation of semiconductors can generate positive and negative charges bound together, known as excitons. The tightly bound exciton at the high energy state, known as Rydberg exciton, is an analogue to the Rydberg atom and shares many superior properties, such as the strong interaction. Rydberg excitons in traditional semiconductors are either not stable enough or difficult to be patterned and controlled. The atomically thin semiconductors known as transitional metal dichalcogenides (TMDCs), however, host robust excitons and usher in an exciting platform of manipulating Rydberg excitons in two-dimension (2D). The Rydberg exciton in TMDCs also has a new quantum degree of freedom. We have recently developed a new measurement technique with high sensitivity to probe the largest 2D Rydberg exciton ever reported. In this proposal, we will pattern the atomically thin semiconductor so that we can control the in-plane electric field and study its interaction with the 2D Rydberg excitons. We will also probe the strong interaction between Rydberg excitons, which will pave the way for a new platform for quantum information science. The integrated education components train the next generation workforce for semiconductors, nanoscale technology, optical science and engineering through research opportunities, curriculum development, and outreach activities, with a particular emphasis on educating and recruiting under-represented groups. Both existing programs at Rensselaer Polytechnic Institute and newly developed outreach programs will be utilized to encourage K-12 students to study in the field of quantum information science and engineering.Technical Description: Rydberg atoms refer to the atoms with the outer electron occupying the highly excited state with a very large principal quantum number n. The strong interaction between Rydberg atoms leads to nonlinear effects such as the Rydberg blockade, providing a promising route for quantum computing and simulation. Rydberg exciton, an excited state of the optically excited electron-hole pair, is a condensed matter analogue of the Rydberg atom and can be directly used for optoelectronic devices thanks to mature fabrication and control technologies of semiconductors. Although high-order Rydberg excitons have been extensively studied in Cu2O crystals, it is difficult to pattern and control the Rydberg exciton in bulk semiconductors. Atomically thin semiconductors host robust exciton with large binding energy, which can also be efficiently controlled electrostatically, thereby opening doors to exciting opportunities for quantum optoelectronics. Here we propose to construct high-quality monolayer transitional metal dichalcogenides (TMDCs) devices in which we fabricate an on-chip p-n junction. We also propose to probe and control the Rydberg excitons through our recently developed photocurrent spectroscopy techniques, with which we have shown unprecedented high order Rydberg excitons in monolayer WSe2 with n = 11. We will investigate the Rydberg exciton’s sensitive response to the external electric and magnetic fields. We will also explore nonlinear effects and try to demonstrate the 2D Rydberg exciton blockade for the first time. This proposal will not only directly demonstrate a prototype of a quantum sensing device based on 2D Rydberg excitons but also paves the way for a ground-breaking platform to manipulate highly tunable 2D Rydberg excitons for quantum information science and engineering. The closely integrated research and education components provide training opportunities for graduate, undergraduate, and K-12 students on advanced optical spectroscopy, nanoscale device fabrication, and quantum materials, with special emphasis on recruiting under-represented groups. This proposal also includes outreach programs for K-12 students, such as working with Troy Boys and Girls Club.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Rydberg原子是指在最低的能量状态下的原子大的尺寸。 E Rydberg Atom并具有许多出色的特性,例如传统半导体中的Rydberg Ickits。 (2d)。 2D Rydberg激情量。课程,尤其着重于教育和招募代表性不足的团体。一个非常大的主cuantum数字。Rydberg原子之间的强相互作用会导致非线性效应,例如Rydberg封锁,有希望的量子计算途径,是量子计算的途径。由于半导体的成熟和控制技术,用于光电设备。我们建议在这里构建高质量的单层金属二分法(TMDCS)设备,我们在其中制造了芯片P-N连接,我们还建议探测Rydberg Incrosents thotocurrent Spectroscopy H ryd rydbergectroays excitons nocecopy in Morydberggecitons notoRAydberggeCitons nsewse。 n = 11。我们将研究敏感性的IELD。为开创性的平台铺平了道路,以操纵高度可调的2D rydberg激子,以获取量子信息和英语。代表该提议。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sufei Shi其他文献
Two-pulse space-time photocurrent correlations at graphene p-n junctions reveal hot carrier cooling dynamics near the Fermi level
石墨烯p-n结处的两脉冲时空光电流相关性揭示了费米能级附近的热载流子冷却动力学
- DOI:
10.1051/epjconf/20134104026 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
M. Graham;Sufei Shi;D. Ralph;Jiwoong Park;P. McEuen - 通讯作者:
P. McEuen
Dynamic Resolution of Photocurrent Generating Pathways by Field-Dependent Ultrafast Microscopy
场相关超快显微镜的光电流产生路径的动态分辨率
- DOI:
10.1364/up.2016.uw2a.3 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Kyle T. Vogt;Sufei Shi;Feng Wang;M. Graham - 通讯作者:
M. Graham
Sufei Shi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sufei Shi', 18)}}的其他基金
Collaborative Research: Moire Exciton-polariton for Analog Quantum Simulation
合作研究:用于模拟量子模拟的莫尔激子极化
- 批准号:
2344658 - 财政年份:2024
- 资助金额:
$ 41.59万 - 项目类别:
Standard Grant
Collaborative Research: Correlated States in Twisted Hetero-bilayer Transition Metal Dichalcogenides
合作研究:扭曲异双层过渡金属二硫属化物中的相关态
- 批准号:
2104902 - 财政年份:2021
- 资助金额:
$ 41.59万 - 项目类别:
Standard Grant
CAREER:Light-Matter Interaction in Van der Waals Heterostructures of Atomically Thin Semiconductors
职业:原子薄半导体范德华异质结构中的光与物质相互作用
- 批准号:
1945420 - 财政年份:2020
- 资助金额:
$ 41.59万 - 项目类别:
Continuing Grant
相似国自然基金
基于时域分辨的单个量子点的双激子结合能研究
- 批准号:62305201
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
具有高激子利用率的纯有机快闪烁体材料设计及应用
- 批准号:62305276
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高阶拓扑局域光场调控及其与低维半导体激子的耦合研究
- 批准号:12304431
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
卤化铅基范德华异质结中自陷态激子的调控研究
- 批准号:12374354
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
二维COF-TMD范德华异质结/超晶格的基元序构、界面调控及激子效应研究
- 批准号:52373283
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
CAREER: Acoustic-driven Manipulation of Electrons and Exciton Species in Atomically-thin Quantum Materials
职业:原子薄量子材料中电子和激子物种的声驱动操纵
- 批准号:
2146567 - 财政年份:2022
- 资助金额:
$ 41.59万 - 项目类别:
Continuing Grant
Neuro-flakes: Direct Voltage Imaging of Neural Activity with Atomically-thin Optoelectronic Materials
神经薄片:利用原子薄光电材料对神经活动进行直接电压成像
- 批准号:
10401044 - 财政年份:2022
- 资助金额:
$ 41.59万 - 项目类别:
Neuro-flakes: Direct Voltage Imaging of Neural Activity with Atomically-thin Optoelectronic Materials
神经薄片:利用原子薄光电材料对神经活动进行直接电压成像
- 批准号:
10598520 - 财政年份:2022
- 资助金额:
$ 41.59万 - 项目类别:
EXCITON PHASE TRANSITION IN ATOMICALLY THIN 2D SEMICONDUCTORS
原子薄二维半导体中的激子相变
- 批准号:
1709934 - 财政年份:2017
- 资助金额:
$ 41.59万 - 项目类别:
Standard Grant
Theory of ultrafast exciton interaction and spectroscopy at atomically thin semiconductor monolayer/organic molecule interfaces (B12)
原子薄半导体单层/有机分子界面超快激子相互作用和光谱学理论(B12)
- 批准号:
279974920 - 财政年份:2015
- 资助金额:
$ 41.59万 - 项目类别:
Collaborative Research Centres