Conference in Geometry, Topology, and Dynamics: Celebrating the Work of Diverse Mathematicians

几何、拓扑和动力学会议:庆祝不同数学家的工作

基本信息

  • 批准号:
    2139125
  • 负责人:
  • 金额:
    $ 4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-04-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

The conference is to held at the University of Michigan in Ann Arbor, Michigan from June 10-June14, 2019 and it will highlight the pioneering works of junior and senior mathematicians in geometry, topology, and dynamics from diverse communities. The conference will also seed the development of a community, with particular emphasis on stimulating the growth of young mathematicians via networking, professional development opportunities, and exposure to state of the art scientific content. The scientific program is organized both to foster communication between mathematicians from a class of underrepresented groups and to bridge divides between adjacent subjects in and around the areas of geometry, topology and dynamics. There are strong ties between low-dimensional topology and both symplectic and hyperbolic geometry. These subjects are in turn tied to Teichmueller theory, dynamics, and algebra, and differential geometry and algebraic topology permeate all of these subfields. There are many deep relationships between these different fields, and the conference aims to explore these ties and create new connections.The conference is devoted to new developments and interactions between low-dimensional topology, geometry, and dynamics. The program spans geometric and algebraic topology, hyperbolic and symplectic geometry, the geometry and topology of surfaces, Teichmueller theory, geometric group theory, and dynamics. Highlights of topics covered include: the relationship between the hyperbolic structures on 3-manifolds and the algebra of their fundamental groups; the relationship between 3- and 4-dimensional geometric topology and the algebra of cobordism and concordance; the influence of combinatorial structures such as the complex of curves on the geometry of Teichmueller space; the foundations and geometry of symplectic manifolds; the interaction of algebra, arithmetic, and analysis in dynamics. The conference web page is http://www.math.wisc.edu/~kent/LG&TBQ.htmlThis award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该会议将于 2019 年 6 月 10 日至 14 日在密歇根州安娜堡市的密歇根大学举行,会议将重点展示来自不同社区的初级和高级数学家在几何、拓扑和动力学方面的开创性工作。会议还将推动社区的发展,特别强调通过网络、专业发展机会和接触最先进的科学内容来刺激年轻数学家的成长。该科学项目的组织目的既是为了促进来自代表性不足群体的数学家之间的交流,也是为了弥合几何、拓扑和动力学领域内及其周围相邻学科之间的分歧。低维拓扑与辛几何和双曲几何之间存在着紧密的联系。这些学科又与 Teichmueller 理论、动力学和代数联系在一起,微分几何和代数拓扑渗透到所有这些子领域。这些不同领域之间存在着许多深刻的联系,本次会议旨在探索这些联系并建立新的联系。本次会议致力于低维拓扑、几何和动力学之间的新发展和相互作用。该课程涵盖几何和代数拓扑、双曲和辛几何、曲面几何和拓扑、Teichmueller 理论、几何群论和动力学。重点涵盖的主题包括:3-流形上的双曲结构与其基本群的代数之间的关系; 3维和4维几何拓扑与共边和协调代数之间的关系;复合曲线等组合结构对Teichmueller空间几何的影响;辛流形的基础和几何;代数、算术和动力学分析的相互作用。会议网页为 http://www.math.wisc.edu/~kent/LG&TBQ.html 该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

AUTUMN KENT其他文献

AUTUMN KENT的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('AUTUMN KENT', 18)}}的其他基金

RTG: Geometry, Group Actions, and Dynamics at Wisconsin
RTG:威斯康星州的几何、群体行动和动力学
  • 批准号:
    2230900
  • 财政年份:
    2023
  • 资助金额:
    $ 4万
  • 项目类别:
    Continuing Grant
The Geometry of Hyperbolic 3-Manifolds
双曲3流形的几何
  • 批准号:
    2202718
  • 财政年份:
    2022
  • 资助金额:
    $ 4万
  • 项目类别:
    Continuing Grant
Hyperbolic Manifolds and Their Moduli Spaces
双曲流形及其模空间
  • 批准号:
    1904130
  • 财政年份:
    2019
  • 资助金额:
    $ 4万
  • 项目类别:
    Continuing Grant
Conference in Geometry, Topology, and Dynamics: Celebrating the Work of Diverse Mathematicians
几何、拓扑和动力学会议:庆祝不同数学家的工作
  • 批准号:
    1916752
  • 财政年份:
    2019
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
CAREER: Moduli of curves via topology, geometry, and arithmetic
职业:通过拓扑、几何和算术计算曲线模
  • 批准号:
    1350075
  • 财政年份:
    2014
  • 资助金额:
    $ 4万
  • 项目类别:
    Continuing Grant
Geometry, algebra, and analysis of moduli of hyperbolic manifolds
几何、代数和双曲流形模分析
  • 批准号:
    1104871
  • 财政年份:
    2011
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    0603601
  • 财政年份:
    2006
  • 资助金额:
    $ 4万
  • 项目类别:
    Fellowship Award

相似国自然基金

奇异黎曼叶状结构的微分几何学研究
  • 批准号:
    12371048
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
非欧几何学的若干历史问题研究
  • 批准号:
    12161086
  • 批准年份:
    2021
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
基于拓扑几何学的致密油藏跨尺度润湿机理研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于代数几何学的统计学习理论研究
  • 批准号:
    12171382
  • 批准年份:
    2021
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
中天山乌拉斯台韧性剪切带几何学与运动学构造解析
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Conference: The 2024 Graduate Student Topology and Geometry Conference
会议:2024年研究生拓扑与几何会议
  • 批准号:
    2348932
  • 财政年份:
    2024
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
Conference: Richmond Geometry Meeting: Geometric Topology and Moduli
会议:里士满几何会议:几何拓扑和模数
  • 批准号:
    2349810
  • 财政年份:
    2024
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
Conference: Low-Dimensional Manifolds, their Geometry and Topology, Representations and Actions of their Fundamental Groups and Connections with Physics
会议:低维流形、其几何和拓扑、其基本群的表示和作用以及与物理学的联系
  • 批准号:
    2247008
  • 财政年份:
    2023
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
The 2022 Graduate Student Topology and Geometry Conference
2022年研究生拓扑与几何会议
  • 批准号:
    2208225
  • 财政年份:
    2022
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
Gokova Geometry/Topology Conference
Gokova几何/拓扑会议
  • 批准号:
    2027247
  • 财政年份:
    2020
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了