Geometry, algebra, and analysis of moduli of hyperbolic manifolds

几何、代数和双曲流形模分析

基本信息

  • 批准号:
    1104871
  • 负责人:
  • 金额:
    $ 15.37万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-07-01 至 2016-06-30
  • 项目状态:
    已结题

项目摘要

The project explores the geometry and topology of moduli spaces of hyperbolic manifolds, the algebra of their fundamental groups, and applications to adjacent areas. The central focus is the geometry and algebra of the mapping class group of a closed surface, specifically the geometric and algebraic behavior of subgroups and profinite completions of this group, and spaces upon which they act. Much of the project is viewed through the lens of hyperbolic geometry, whose theorems and techniques cast a seductive profile upon the mapping class group. The core of the project falls into three parts: (1) continuation of an ongoing project with C. Leininger, relevant to Gromov's Coarse Hyperbolization Problem, to understand convex cocompact subgroups of mapping class groups of surfaces; (2) continuation of a program of the PI, J. Brock, and C. Leininger to produce purely pseudo-Anosov surface subgroups of mapping class groups and surface bundles over surfaces with hyperbolic fundamental group; (3) work devoted to completion of M. Boggi's program to establish the congruence subgroup property for mapping class groups of surfaces, building upon prior work of the PI.A moduli space is a collection of geometric objects that is itself a geometric object. A practical example is the collection of all possible arrangements of cell phone towers on the surface of the Earth. One may use the distances between individual towers to define a distance between two arrangements of towers, and the collection of arrangements of towers becomes a geometric object itself, a "space" of arrangements. Geographical constraints limit the feasible configurations of towers, and understanding the geometry of the space of feasible configurations can have direct bearing on which configurations provide the best network coverage. The project is concerned with moduli spaces of hyperbolic manifolds, of which the space of configurations of cell phone towers on the Earth is a special example. There is an intriguing analogy between moduli spaces of hyperbolic manifolds and the hyperbolic manifolds themselves. In other words, there is a sense in which a collection of hyperbolic manifolds may be roughly considered a hyperbolic manifold itself, creating a sort of information feedback loop reciprocally informing the study of both the hyperbolic manifolds and their moduli spaces. It is this analogy that lies at the heart of the project.
该项目探索双曲流形模空间的几何和拓扑、其基本群的代数以及在相邻领域的应用。中心焦点是封闭曲面的映射类群的几何和代数,特别是子群的几何和代数行为以及该群的有限完成,以及它们作用的空间。该项目的大部分内容都是通过双曲几何的透镜来看待的,双曲几何的定理和技术给映射类组带来了诱人的轮廓。该项目的核心分为三个部分:(1) 与 C. Leininger 正在进行的项目的延续,与格罗莫夫的粗双曲化问题相关,以理解曲面映射类组的凸协紧子组; (2) PI、J. Brock 和 C. Leininger 的程序的继续,以产生映射类群的纯伪 Anosov 曲面子群和具有双曲基本群的曲面上的曲面丛; (3) 致力于完成 M. Boggi 程序的工作,该程序建立了用于映射曲面类组的同余子组属性,建立在 PI 先前工作的基础上。模空间是几何对象的集合,其本身就是一个几何对象。一个实际的例子是地球表面手机信号塔所有可能排列的集合。 人们可以使用各个塔之间的距离来定义塔的两个布置之间的距离,并且塔的布置的集合本身变成几何对象,即布置的“空间”。地理限制限制了塔的可行配置,并且了解可行配置空间的几何形状可以直接影响哪些配置提供最佳网络覆盖。该项目涉及双曲流形的模空间,其中地球上手机信号塔的配置空间是一个特殊的例子。 双曲流形的模空间和双曲流形本身之间有一个有趣的类比。 换句话说,从某种意义上说,双曲流形的集合可以粗略地视为双曲流形本身,从而创建一种信息反馈循环,相互告知双曲流形及其模空间的研究。这个类比是该项目的核心。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

AUTUMN KENT其他文献

AUTUMN KENT的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('AUTUMN KENT', 18)}}的其他基金

RTG: Geometry, Group Actions, and Dynamics at Wisconsin
RTG:威斯康星州的几何、群体行动和动力学
  • 批准号:
    2230900
  • 财政年份:
    2023
  • 资助金额:
    $ 15.37万
  • 项目类别:
    Continuing Grant
The Geometry of Hyperbolic 3-Manifolds
双曲3流形的几何
  • 批准号:
    2202718
  • 财政年份:
    2022
  • 资助金额:
    $ 15.37万
  • 项目类别:
    Continuing Grant
Conference in Geometry, Topology, and Dynamics: Celebrating the Work of Diverse Mathematicians
几何、拓扑和动力学会议:庆祝不同数学家的工作
  • 批准号:
    2139125
  • 财政年份:
    2021
  • 资助金额:
    $ 15.37万
  • 项目类别:
    Standard Grant
Hyperbolic Manifolds and Their Moduli Spaces
双曲流形及其模空间
  • 批准号:
    1904130
  • 财政年份:
    2019
  • 资助金额:
    $ 15.37万
  • 项目类别:
    Continuing Grant
Conference in Geometry, Topology, and Dynamics: Celebrating the Work of Diverse Mathematicians
几何、拓扑和动力学会议:庆祝不同数学家的工作
  • 批准号:
    1916752
  • 财政年份:
    2019
  • 资助金额:
    $ 15.37万
  • 项目类别:
    Standard Grant
CAREER: Moduli of curves via topology, geometry, and arithmetic
职业:通过拓扑、几何和算术计算曲线模
  • 批准号:
    1350075
  • 财政年份:
    2014
  • 资助金额:
    $ 15.37万
  • 项目类别:
    Continuing Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    0603601
  • 财政年份:
    2006
  • 资助金额:
    $ 15.37万
  • 项目类别:
    Fellowship Award

相似国自然基金

研究模空间的代数拓扑方法及其在同伦论、凝聚态物理和时间序列分析中的应用
  • 批准号:
    12371069
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
信道网络结构下逻辑有限状态机的代数建模与分析
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
用凸分析理论与零乘决定Banach代数探讨保持问题
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
复分析方法在代数相关性问题中的应用
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
代数多项式方法在调和分析、PDEs与几何测度论中的应用
  • 批准号:
    12126409
  • 批准年份:
    2021
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Categorical algebra in analysis, geometry, and topology
分析、几何和拓扑中的分类代数
  • 批准号:
    RGPIN-2019-05274
  • 财政年份:
    2022
  • 资助金额:
    $ 15.37万
  • 项目类别:
    Discovery Grants Program - Individual
Categorical algebra in analysis, geometry, and topology
分析、几何和拓扑中的分类代数
  • 批准号:
    RGPIN-2019-05274
  • 财政年份:
    2021
  • 资助金额:
    $ 15.37万
  • 项目类别:
    Discovery Grants Program - Individual
A Virtual Project-Based Learning Sandbox for Mimetics and Medically Inspired Classroom Engineering (MiMICRE)
用于模仿和医学启发课堂工程的基于虚拟项目的学习沙盒 (MiMICRE)
  • 批准号:
    10254459
  • 财政年份:
    2021
  • 资助金额:
    $ 15.37万
  • 项目类别:
New development of analysis and geometry on convex cones
凸锥分析与几何新进展
  • 批准号:
    20K03657
  • 财政年份:
    2020
  • 资助金额:
    $ 15.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Categorical algebra in analysis, geometry, and topology
分析、几何和拓扑中的分类代数
  • 批准号:
    RGPIN-2019-05274
  • 财政年份:
    2020
  • 资助金额:
    $ 15.37万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了