ERI: Multiphysics cosimulation approach for optimal design of microgrid high frequency transformers
ERI:微电网高频变压器优化设计的多物理场协同仿真方法
基本信息
- 批准号:2138408
- 负责人:
- 金额:$ 19.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Microgrids are electrical networks capable of operating disconnected from the utility grid, and they are key players in the ongoing energy revolution. Advancement of the current knowledge in the field of microgrids is critical to transform the present energy landscape by increasing the reliability of the US electric power grid while reducing its carbon footprint. Microgrids are characterized by their extensive inclusion of renewable and distributed energy resources, use of smart technologies, and contribution to the resilience and energy-efficiency of modern power systems. An important challenge for the widespread implementation of microgrids is that they endure significant electromagnetic and thermal stresses during their operation, thus there is an urgent need for the design of novel, more efficient, and more resilient microgrid components. This is particularly true for power electronic converters, which are extensively used for microgrid interconnection to the main grid, and for interfacing of generation sources, energy storage systems and electric loads. Solid-state transformers are a novel type of power converter that has attracted a lot of attention because they are highly efficient and have a smaller footprint than conventional power transformers given their substantially reduced size, weight and cost; they also include smart functionalities to respond better to grid disturbances. Therefore, solid-state transformers have the potential of replacing traditional transformers for the widespread addition of renewable resources. From the main components of a solid-state transformer, the high frequency transformer is recognized as its key element. The efficient and affordable design of high frequency transformers is critical for achieving the main requirements of solid-state transformers: high density, minimal losses, voltage regulation, and electric isolation. Thus far such design has been a bottleneck for the mainstream adoption of solid-state transformers in distribution systems and microgrids due to reliability and operating life concerns. In this project, we propose the use of novel and innovative modeling and simulation tools for the optimal design of high frequency transformers to maximize their operating life and minimize the possibility of failure or damage under the conditions imposed by microgrid application. The outcomes of this project are expected to have a positive impact on the development of a more resilient and sustainable electrical power grid.The main goal of this project is to assess the effectiveness of the synergistic combination of novel multiphysics and microgrid modeling and simulation tools for the optimal design of high frequency transformers for microgrid application, considering the stresses produced by the extensive inclusion of power electronic-interfaced sources, loads, and storage units during steady state and transient conditions. To reach this goal, this project includes the development, implementation, and comprehensive testing of a modeling approach for accurate dynamic simulation of the microgrid system and its online interaction with a detailed physics-based high frequency transformer model. The proposed cosimulation approach constitutes a substantial improvement over existing design tools, considering the particular challenges of microgrid operation. By taking a multiphysics and multi-objective design approach, this project intends to obtain an enhanced high frequency transformer design that maximizes efficiency, operating life and power density of the device. By interfacing finite element analysis and dynamic system simulation tools, this project aims to combine the benefits from both tools as an integral part of an enhanced design optimization process: accurate and realistic microgrid simulation under a variety of normal and abnormal operating conditions, and detailed geometrical and material multiphysics modeling of the HF transformer. The successful completion of the proposed project will constitute an important step forward in the widespread utilization of SSTs in microgrids and distribution systems, which in turn can result in a significantly enhanced efficiency in the integration of renewable generation, as well as in the delivery of electricity to consumers. In addition to the scientific goals of this project, the PI endeavors to use this project as a platform for improving engineering education and recruiting individuals from diverse backgrounds to power engineering. In order to advance these outcomes, the PI will run a summer undergraduate research program to provide students with genuine research experiences and training in the interrelated power engineering and electromagnetic design areas.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
微电网是能够与公用电网断开连接的电网,它们是正在进行的能源革命的关键参与者。在微电网领域的当前知识的进步对于通过提高美国电力网格的可靠性而同时减少其碳足迹的可靠性来改变当前的能源景观至关重要。微电网的特征是它们广泛包含可再生能源和分布式能源,智能技术的使用以及对现代电力系统的弹性和能源效率的贡献。微电网广泛实施的一个重要挑战是,它们在操作过程中忍受了明显的电磁和热应力,因此迫切需要设计新颖,更高效,更弹性的微电网组件。对于电力电子转换器而言,尤其如此,这些转换器广泛用于微电网互连到主网格,以及将发电源,能源存储系统和电力负载的接口。 固态变压器是一种新型的电力转换器,引起了很多关注,因为它们高效并且占地面积小于常规功率变压器,因为它们的尺寸,重量和成本大大降低;它们还包括智能功能,以更好地应对电网障碍。因此,固态变压器具有替代传统变压器的潜力,以广泛增加可再生资源。从固态变压器的主要组件中,高频变压器被认为是其关键元素。高频变压器的高效设计对于实现固态变压器的主要要求至关重要:高密度,最小损耗,电压调节和电气隔离。到目前为止,由于可靠性和运营生活问题,这种设计是主流采用固态变压器和微电网中固态变压器的瓶颈。在这个项目中,我们建议使用新颖和创新的建模和仿真工具来最佳设计高频变压器,以最大程度地发挥其运营生活,并最大程度地减少微网施加的条件下的失败或损害的可能性。预计该项目的结果对开发更弹性,更可持续的电力电网的开发会产生积极的影响。该项目的主要目标是评估新型多物理学和微电流建模和仿真工具的协同组合的有效性,用于在高频变压器应用过程中使用稳定性构成的稳定性组合,以考虑通过稳定性构成的稳定性组合,以考虑促进式促销量,以考虑促销促进量,以考虑促销促进量,考虑促进量,以考虑促销的填充,以考虑促销的构造,以考虑促进量的加载量。和瞬态条件。为了实现这一目标,该项目包括对微电网系统进行准确动态模拟的建模方法的开发,实现和全面测试,以及与基于物理的高频变压器模型的在线互动。考虑到微电网操作的特殊挑战,提出的共拟合方法对现有设计工具构成了实质性改进。通过采用多物理学和多目标设计方法,该项目打算获得增强的高频变压器设计,以最大程度地提高设备的效率,运行寿命和功率密度。通过将有限元分析和动态系统仿真工具接口,该项目旨在将这两个工具的好处结合在一起,作为增强设计优化过程不可或缺的一部分:在多种正常和异常的工作条件下,准确且逼真的微电网模拟,以及详细的几何和材料的材料和材料的多型物理学模型。该项目的成功完成将构成在微电网和分配系统中广泛利用SST的重要一步,这反过来又可能导致可再生生成的整合效率显着提高,以及向消费者传递电力的效率。除了该项目的科学目标外,PI努力将该项目用作改善工程教育的平台,并招募了从不同背景到动力工程的个人。为了进步这些结果,PI将开展夏季本科研究计划,以在相互关联的动力工程和电磁设计领域为学生提供真正的研究经验和培训。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的智力和更广泛影响的评估来通过评估来提供支持的。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cosimulation Approach for Transient Analysis and Inductor Design of DC-DC Buck Converters
DC-DC 降压转换器瞬态分析和电感设计的协同仿真方法
- DOI:10.1109/compel52896.2023.10221080
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Alyami, Faraj;Gnamien, Jean C.;Gomez, Pablo
- 通讯作者:Gomez, Pablo
Synergistic Approach for Computational Analysis of Geomagnetically Induced Currents in Power Grids
电网地磁感应电流计算分析的协同方法
- DOI:10.1109/naps58826.2023.10318742
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Oke, Adebola;Gomez, Pablo
- 通讯作者:Gomez, Pablo
A Photovoltaic MPPT Charge Controller Real-Time Testbed for Cybersecurity Applications
适用于网络安全应用的光伏 MPPT 充电控制器实时测试台
- DOI:10.1109/wcnps60622.2023.10345118
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Bagley, Isaac;Braasch, Noah;Gomez, Pablo;Bhattacharjee, Shameek
- 通讯作者:Bhattacharjee, Shameek
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pablo Gomez其他文献
Compressive sensing: A methodological approach to an efficient signal processing
压缩感知:高效信号处理的方法论
- DOI:
10.15446/dyna.v82n192.45512 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Evelio Astaiza Hoyos;Pablo Gomez;Héctor Fabio Bermúdez Orozco - 通讯作者:
Héctor Fabio Bermúdez Orozco
1066: Limitations of Biopsy Gleason Grade: Implications for Counseling Patients with Biopsy Gleason 6 Prostate Cancer
- DOI:
10.1016/s0022-5347(18)38303-4 - 发表时间:
2004-04-01 - 期刊:
- 影响因子:
- 作者:
Paul D. Sved;Murugesan Manoharan;Pablo Gomez;Sandy Kim;Mark S. Soloway - 通讯作者:
Mark S. Soloway
Stakeholders versus Firm Communication in Social Media: The Case of Twitter and Corporate Social Responsibility Information
社交媒体中的利益相关者与企业沟通:Twitter 和企业社会责任信息案例
- DOI:
10.1080/09638180.2019.1708428 - 发表时间:
2019 - 期刊:
- 影响因子:3.3
- 作者:
Pablo Gomez;Encarna Guillamón;Beatriz García Osma - 通讯作者:
Beatriz García Osma
a human–robot interaction testbed to study linguistic features of speech
研究语音语言特征的人机交互测试平台
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Cao;Hoang Long;Lars Christian;Xuan Nhan;De Beir;Pablo Gomez - 通讯作者:
Pablo Gomez
Microstructure and mechanical properties of mild steel-stainless steel bimetallic structures built using Wire Arc Additive Manufacturing
使用电弧增材制造技术构建的低碳钢-不锈钢双金属结构的微观结构和机械性能
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
A. Suárez;Asier Panfilo;E. Aldalur;F. Veiga;Pablo Gomez - 通讯作者:
Pablo Gomez
Pablo Gomez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pablo Gomez', 18)}}的其他基金
I-Corps: Customer Discovery for Transmission Line Fault Location Technology
I-Corps:输电线路故障定位技术的客户发现
- 批准号:
2217504 - 财政年份:2022
- 资助金额:
$ 19.91万 - 项目类别:
Standard Grant
Reviewer Zero: Changing the Culture of Peer Review to Increase Diversity, Equity, and Inclusion
零审稿人:改变同行评审文化以增加多样性、公平性和包容性
- 批准号:
2224779 - 财政年份:2022
- 资助金额:
$ 19.91万 - 项目类别:
Standard Grant
Collaborative Research: Interaction of Sensory and Response Processes in Decision Making
协作研究:决策中感觉和反应过程的相互作用
- 批准号:
2127135 - 财政年份:2021
- 资助金额:
$ 19.91万 - 项目类别:
Standard Grant
STTR Phase I: Focused Ion Beam Fabricated Custom Probes for Superior Magnetic Force Microscopy of Recording Media
STTR 第一阶段:聚焦离子束制造的定制探针,用于记录介质的高级磁力显微镜
- 批准号:
0712445 - 财政年份:2007
- 资助金额:
$ 19.91万 - 项目类别:
Standard Grant
相似国自然基金
多地系统和多地物理学
- 批准号:11975131
- 批准年份:2019
- 资助金额:60 万元
- 项目类别:面上项目
有限理性人群拥挤致灾机制与管控方法研究
- 批准号:71871189
- 批准年份:2018
- 资助金额:48.0 万元
- 项目类别:面上项目
基于多尺度多重分形交叉相关系数的网络构建及其应用
- 批准号:11805119
- 批准年份:2018
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
量子多体系における相空間の高次ホモトピーと幾何学的物理量の研究
量子多体系统相空间高阶同伦性与几何物理量研究
- 批准号:
23K25794 - 财政年份:2024
- 资助金额:
$ 19.91万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
アタッチメントの多様性創発に関する生物学的基盤の解明-行動・生理指標による検証
阐明依恋多样性出现的生物学基础 - 使用行为和生理指标进行验证
- 批准号:
24KJ1355 - 财政年份:2024
- 资助金额:
$ 19.91万 - 项目类别:
Grant-in-Aid for JSPS Fellows
高レベル放射性廃棄物処理のための機械学習:高温多相融体の制御によるアプローチ
高放射性废物处理的机器学习:一种使用受控高温多相熔体的方法
- 批准号:
23K28046 - 财政年份:2024
- 资助金额:
$ 19.91万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
原始星周囲の化学的多様性と星形成過程・物理環境との関係の解明
阐明原恒星周围化学多样性、恒星形成过程和物理环境之间的关系
- 批准号:
24K17096 - 财政年份:2024
- 资助金额:
$ 19.91万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Guided Exploration of Multiphysics Design Space for Electric Machines Using Tensorial Analysis (GEOMETRY)
职业:使用张量分析(几何)引导探索电机的多物理场设计空间
- 批准号:
2338541 - 财政年份:2024
- 资助金额:
$ 19.91万 - 项目类别:
Continuing Grant