ERI: Exploiting Dynamic Origami for Reconfigurable and Versatile Control of Acoustic Waves
ERI:利用动态折纸实现声波的可重构和多功能控制
基本信息
- 批准号:2137749
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-01 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This Engineering Research Initiation (ERI) grant will fund research that enables increased flexibility in the control of sound propagating through civil infrastructure, mechanical machinery, and aerospace systems, including for applications in acoustic imaging, defect detection, and noise control, thereby promoting the progress of science and advancing the national prosperity and welfare. Acoustic metasurfaces are two-dimensional thin artificial materials that are empowered with extraordinary control over the scattering of sound waves. Until recently, such metasurfaces had fixed configurations that were difficult to tune in real time, thereby limiting their potential use and performance. A recent focus on tunable, reconfigurable, and programmable acoustic metasurfaces promises efficient and smart control of sound waves, but existing solutions suffer from sophisticated tuning mechanisms, use of active elements, and poor efficiency. This project will overcome these limitations by demonstrating new and simple mechanisms for reconfigurable acoustic wave control using flexible structures designed by origami principles, whose folded geometry may be modulated in real time. Although origami principles have been widely used in robotics, soft materials, and flexible electronics, the relationship between dynamic origami and acoustic wave control has been largely unexplored. The knowledge and tools generated by this research will enable the next generation of reconfigurable wave-based devices that are adaptive to changing environments and performance objectives. Activities aiming to engage new generations of students in STEM education and research include outreach programs to K-12 students and extensive planned participation of undergraduate students in team-based technical research projects.This research aims to make fundamental contributions to a practical understanding of how the shape, periodicity, and size of origami structures change dynamically as they undergo deformation and the concomitant impact on acoustic wave propagation. It will achieve this outcome by building a theoretical and computational framework for characterizing and predicting acoustic wave interactions with dynamic origami structures, by developing design strategies that enable application-specific synthesis of dynamic origami structures with target functionalities, and by investigating different tuning mechanisms. Experimental validation and testing will be performed on prototype reconfigurable acoustic metasurfaces that leverage principles of origami highlighted by the theoretical analysis. Such experimental realization will be used to demonstrate wave steering and wave focusing functionalities typical of sensing, communication, imaging, and energy harvesting applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项工程研究启动(ERI)赠款将资助研究,以提高通过民用基础设施,机械机械和航空航天系统传播声音的灵活性,包括在声学成像,缺陷检测和噪声控制中应用,从而促进科学的进步,并促进科学的进步,并促进国家繁荣和福利。声学元面是二维薄薄的人造物质,具有对声波散射的非同寻常的控制权。直到最近,此类元信息具有固定的配置,这些配置很难实时调整,从而限制了它们的潜在使用和性能。最近关注可调,可重构和可编程的声学元信息有望对声波有效且智能控制,但是现有的解决方案遭受了复杂的调整机制,使用主动元素的使用和效率低下。该项目将通过使用折纸原理设计的柔性结构来证明可重新配置的声波控制的新的和简单的机制来克服这些限制,折纸原理可以实时调制其折叠的几何形状。尽管折纸原理已被广泛用于机器人技术,软材料和柔性电子设备,但动态折纸与声波控制之间的关系在很大程度上没有探索。这项研究生成的知识和工具将使下一代可重构波浪的设备适应不断变化的环境和性能目标。旨在吸引新一代学生进行STEM教育和研究的活动包括向K-12学生进行外展计划,以及在基于团队的技术研究项目中的广泛计划参与。这项研究旨在为对形状,周期性和折纸的大小如何动态地变化而影响的形状,周期性和大小对他们的形状,周期性和大小进行动态变化,从而对他们的形状,周期性和大小影响造成基本理解,从而对其进行动态变化和增强性影响,并对其进行了促进影响。它将通过建立一个理论和计算框架来实现这一结果,以通过制定设计策略来表征和预测与动态折纸结构的声波相互作用,从而可以通过目标功能对动态折纸结构进行特定应用的综合,并研究不同的调谐机制。实验验证和测试将对原型可重构的声学元面积进行,该原理由理论分析强调的折纸原理。这种实验实现将用于证明波动转向和波动焦点功能的典型传感,交流,成像和能量收集应用的功能。该奖项反映了NSF的法定任务,并被认为值得通过基金会的知识分子优点和更广泛的影响审查标准通过评估来进行评估。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Selectively exciting quasibound states in the continuum in open microwave resonators using dielectric scatters
- DOI:10.1103/physrevb.107.184309
- 发表时间:2023-05
- 期刊:
- 影响因子:3.7
- 作者:Olugbenga Gbidi;Chen Shen
- 通讯作者:Olugbenga Gbidi;Chen Shen
Underwater double vortex generation using 3D printed acoustic lens and field multiplexing
- DOI:10.1063/5.0201781
- 发表时间:2024-03
- 期刊:
- 影响因子:6.1
- 作者:Chadi Ellouzi;Ali Zabihi;Farhood Aghdasi;Aidan Kayes;Milton Rivera;Jiaxin Zhong;Amir Miri;Chen Shen
- 通讯作者:Chadi Ellouzi;Ali Zabihi;Farhood Aghdasi;Aidan Kayes;Milton Rivera;Jiaxin Zhong;Amir Miri;Chen Shen
Mitigating Inaudible Ultrasound Attacks on Voice Assistants With Acoustic Metamaterials
- DOI:10.1109/access.2023.3266722
- 发表时间:2023
- 期刊:
- 影响因子:3.9
- 作者:J. S. Lloyd;Cole G. Ludwikowski;Cyrus Malik;Chen Shen
- 通讯作者:J. S. Lloyd;Cole G. Ludwikowski;Cyrus Malik;Chen Shen
Acoustic resonances in non-Hermitian open systems
- DOI:10.1038/s42254-023-00659-z
- 发表时间:2023-11
- 期刊:
- 影响因子:38.5
- 作者:Lujun Huang;Sibo Huang;Chen Shen;Simon Yves;A. Pilipchuk;Xiang Ni;Seunghwi Kim;Chiang Kei Yan-Chiang-Kei-Y
- 通讯作者:Lujun Huang;Sibo Huang;Chen Shen;Simon Yves;A. Pilipchuk;Xiang Ni;Seunghwi Kim;Chiang Kei Yan-Chiang-Kei-Y
Non-Hermitian planar elastic metasurface for unidirectional focusing of flexural waves
- DOI:10.1063/5.0097177
- 发表时间:2022-06
- 期刊:
- 影响因子:4
- 作者:Katerina Stojanoska;Chen Shen
- 通讯作者:Katerina Stojanoska;Chen Shen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chen Shen其他文献
Multiplexed acoustic holography using an iterative angular spectrum approach
使用迭代角谱方法的多重声全息术
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:2.4
- 作者:
Ian Meighan;E. de Asis;Chen Shen - 通讯作者:
Chen Shen
The Impact of Infrastructure Development on China–ASEAN Trade-Evidence from ASEAN
基础设施发展对中国-东盟贸易的影响——来自东盟的证据
- DOI:
10.3390/su15043277 - 发表时间:
2023 - 期刊:
- 影响因子:3.9
- 作者:
Chen Shen - 通讯作者:
Chen Shen
Drying kinetics and moisture migration mechanism of yam slices by cold plasma pretreatment combined with far-infrared drying
冷等离子体预处理联合远红外干燥山药片的干燥动力学及水分迁移机理
- DOI:
10.1016/j.ifset.2024.103730 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Chen Shen;Wenqing Chen;Tariq Aziz;E. Khojah;Fahad Al;A. Alamri;M. Alhomrani;Haiying Cui;Lin Lin - 通讯作者:
Lin Lin
Dimensionality Reduction of Local Field Potential Features with Convolution Neural Network in Neural Decoding: A Pilot Study
神经解码中卷积神经网络局部场势特征的降维:试点研究
- DOI:
10.1109/embc46164.2021.9630630 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Xingchen Ran;Yiwei Zhang;Chen Shen;B. Yvert;Weidong Chen;Shaomin Zhang - 通讯作者:
Shaomin Zhang
Application of Fuel Element Combustion Properties to a Semi-Empirical Flame Propagation Model for Live Wildland Utah Shrubs
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Chen Shen - 通讯作者:
Chen Shen
Chen Shen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chen Shen', 18)}}的其他基金
CAREER: Toward Smart Surface Acoustic Wave Devices with Gate-Tunability
职业:开发具有栅极可调谐性的智能表面声波器件
- 批准号:
2337069 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: Mimicking Stress-Mediated Invasive Solid Tumor Using Bioprinted Microtissue and Acoustofluidics
合作研究:利用生物打印微组织和声流控技术模拟压力介导的侵袭性实体瘤
- 批准号:
2243507 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似国自然基金
氮磷输入和水分利用效率调节森林树木碳源-库动态的联动机制
- 批准号:32371635
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
资源动态演化的矿山综合能源物-能协调利用与安全规划研究
- 批准号:52307154
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
颗粒态有机磷矿化周转过程及藻类生物利用效应的全链条动态补给机制研究
- 批准号:42307317
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
利用节点像差理论实现基于主动光学的动态小凹广域高分辨成像望远镜技术研究
- 批准号:12203055
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
利用节点像差理论实现基于主动光学的动态小凹广域高分辨成像望远镜技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Integrated Modeling and Optimization of Urban Land Use and Dynamic Traffic Network Equilibrium
城市土地利用与动态交通网络均衡综合建模与优化
- 批准号:
22K04575 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Exploiting High Repetition Rate Experiments In Dynamic High-Pressure Physics.
在动态高压物理中利用高重复率实验。
- 批准号:
2742114 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Studentship
Integration of few layer graphene (FLG) composites into high-sensitive dynamic photodetectors and sensors exploiting fluctuational transport
将少层石墨烯 (FLG) 复合材料集成到利用波动传输的高灵敏度动态光电探测器和传感器中
- 批准号:
561065-2020 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Alliance Grants
CAREER: Autonomous Live Sketching of Dynamic Environments by Exploiting Spatiotemporal Variations
职业:利用时空变化自主实时绘制动态环境草图
- 批准号:
2047169 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Exploring & Exploiting the Dynamic Optical Sky
探索
- 批准号:
2034437 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant