Collaborative Research: U.S.-Ireland R&D Partnership: Full Atomistic Understanding of Solid-Liquid Interfaces via an Integrated Experiment-Theory Approach

合作研究:美国-爱尔兰 R

基本信息

  • 批准号:
    2137147
  • 负责人:
  • 金额:
    $ 31万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-04-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

The worldwide deployment of renewable energy requires efficient electrochemical systems, such as batteries, supercapacitors, and fuel cells. In most of these systems, the energy conversion and storage processes rely crucially on the interface between solid electrodes and liquid electrolytes. However, the fundamental atomic and molecular structure at these electrified interfaces remains elusive. The goal of the project is to achieve an atomistic understanding of the structure and reaction dynamics of electrode-electrolyte interfaces, and provide design principles for various low-cost, carbon-based electrochemical systems. Through international collaborations with the University College Dublin and Ulster University, the PIs will develop an integrated experimental imaging - atomistic simulation method. The technical outcomes of the project will facilitate the design and engineering of efficient electrochemical energy conversion and storage systems. The educational efforts of the project will build and incorporate demo devices of electrochemical cells and materials imaging platforms into a series of education and outreach activities both domestically and internationally. The project will train the graduate and undergraduate students with skills in both experimental and simulation methods and provide them with an international collaborative research experience. The project will contribute to efforts to educate the public on the basic mechanisms of renewable energy conversion and storage.The project’s aim is to achieve a thorough atomistic understanding of electrochemical processes by determining the 3D structure of electrode-electrolyte interfaces, including both the surface of the solid electrodes and the liquid solvation layers. The project’s approach will integrate molecular dynamics and density functional theory simulations with 3D atomic-resolution force microscopy experiments to achieve a joint experiment-theory platform for precise understanding and prediction of electrochemical interfaces. The platform will be used to unravel the solvation layer structure that is responsible for energy storage in carbon-based supercapacitors, and the solvent-included atomistic kinetics of electrocatalytic reactions on single-atom catalysts. The project will produce fundamental models of solid-liquid interfaces that consider the inherent atomic-scale heterogeneities. Furthermore, the thorough determination of the atomistic interfacial structure and catalytic activities of single-atom catalysts will shed light on the unconventional scaling relationships of catalysts with nonuniform structures. This will be an important step towards a more predictive, molecular-level theory beyond the widely accepted "Sabatier Principle" for heterogeneous catalysis and electrocatalysis. The results will significantly foster the design and engineering of electrochemical interfaces for low-cost, highly efficient renewable energy applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
全球部署需要电化学系统,例如电池和燃料电池。该项目的目的是实现结构的原子,并通过与Uliversy Ulster一起为各种低成本系统提供设计原理。模拟方法在实验性化方法中以技能为学生进行交易和地下学生,并为他们提供国际协作研究经验,以教育公众有关可再生能源的基本机制。通过确定液体溶液层的e-电解质界面的3D结构来理解电化学过程电化学界面的串联和预测是对基于碳的超级电容器在单原子催化剂上的响应单原子催化剂将是AAS将是一个重要的一步,迈出了更具预测性的分子理论,而超出了sabatier原理”,“对于杂合的catatatatatatatatatAtatatatatatAtatatatatatAtatatatatAtatatasis。 SF'Story Mission被认为是值得通过Toundation的知识分子优点和更广泛影响的评论标准来评估值得支持的。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yingjie Zhang其他文献

Long-term and Short-term Beta-blockade after Myocardial Infarction
心肌梗死后的长期和短期β受体阻滞剂
  • DOI:
    10.1016/s0140-6736(82)92230-9
  • 发表时间:
    1982
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bo Wang;Xin He;Jingliang Zhang;Yingjie Zhang
  • 通讯作者:
    Yingjie Zhang
Scenario Aware Recommendation Algorithm Based on School Enterprise Cooperation
Universal Control in 1e-2n Spin System Utilizing Anisotropic Hyperfine Interactions
  • DOI:
  • 发表时间:
    2010-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yingjie Zhang
  • 通讯作者:
    Yingjie Zhang
Lanthanide mononuclear complexes with a tridentate Schiff base ligand: Structures, spectroscopies and properties
具有三齿席夫碱配体的镧系元素单核配合物:结构、光谱和性质
  • DOI:
    10.1016/j.poly.2019.03.017
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Yingjie Zhang;M. Avdeev;J. Price;I. Karatchevtseva;Daniel J. Fanna;I. Chironi;K. Lu
  • 通讯作者:
    K. Lu
Effect of Glycine-to-nitrate Ratio on Solution Combustion Synthesis of ZnFe2O4 as Anode Materials for Lithium Ion Batteries
甘氨酸与硝酸盐比例对溶液燃烧合成ZnFe2O4锂离子电池负极材料的影响

Yingjie Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yingjie Zhang', 18)}}的其他基金

CAREER: Elucidating the Correlative Interfacial Solvation, Nucleation, and Growth Processes in Battery Electrolytes
职业:阐明电池电解质中相关的界面溶剂化、成核和生长过程
  • 批准号:
    2339175
  • 财政年份:
    2024
  • 资助金额:
    $ 31万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于FRET受体上升时间的单分子高精度测量方法研究
  • 批准号:
    22304184
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
脂质多聚复合物mRNA纳米疫苗的构筑及抗肿瘤治疗研究
  • 批准号:
    52373161
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
屏障突破型原位线粒体基因递送系统用于治疗Leber遗传性视神经病变的研究
  • 批准号:
    82304416
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
细胞硬度介导口腔鳞癌细胞与CD8+T细胞间力学对话调控免疫杀伤的机制研究
  • 批准号:
    82373255
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
乙酸钙不动杆菌上调DUOX2激活PERK/ATF4内质网应激在炎症性肠病中的作用机制研究
  • 批准号:
    82300623
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: U.S. institutions after COVID-19: Trust, accountability, and public perceptions
合作研究:COVID-19 后的美国机构:信任、责任和公众看法
  • 批准号:
    2422394
  • 财政年份:
    2024
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
Collaborative Research: U.S. Crossroads—Connectivity of the North Atlantic Deep Western Boundary Current through the Subpolar-Subtropical Transition Zone
合作研究:美国十字路口——北大西洋深西边界流通过副极地-副热带过渡区的连通性
  • 批准号:
    2318948
  • 财政年份:
    2023
  • 资助金额:
    $ 31万
  • 项目类别:
    Continuing Grant
Admin Core
管理核心
  • 批准号:
    10885850
  • 财政年份:
    2023
  • 资助金额:
    $ 31万
  • 项目类别:
Collaborative Research: U.S. Crossroads—Connectivity of the North Atlantic Deep Western Boundary Current through the Subpolar-Subtropical Transition Zone
合作研究:美国十字路口——北大西洋深西边界流通过副极地-副热带过渡区的连通性
  • 批准号:
    2318947
  • 财政年份:
    2023
  • 资助金额:
    $ 31万
  • 项目类别:
    Continuing Grant
Collaborative Research: Unraveling North American Ice-Sheet Dynamics and Regional Sea-Level Change along the U.S. Mid-Atlantic over the Last Glacial Cycle
合作研究:揭示末次冰期期间北美冰盖动力学和美国大西洋中部沿线区域海平面变化
  • 批准号:
    2244721
  • 财政年份:
    2023
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了