Collaborative Research: U.S.-Ireland R&D Partnership: Full Atomistic Understanding of Solid-Liquid Interfaces via an Integrated Experiment-Theory Approach
合作研究:美国-爱尔兰 R
基本信息
- 批准号:2137147
- 负责人:
- 金额:$ 31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The worldwide deployment of renewable energy requires efficient electrochemical systems, such as batteries, supercapacitors, and fuel cells. In most of these systems, the energy conversion and storage processes rely crucially on the interface between solid electrodes and liquid electrolytes. However, the fundamental atomic and molecular structure at these electrified interfaces remains elusive. The goal of the project is to achieve an atomistic understanding of the structure and reaction dynamics of electrode-electrolyte interfaces, and provide design principles for various low-cost, carbon-based electrochemical systems. Through international collaborations with the University College Dublin and Ulster University, the PIs will develop an integrated experimental imaging - atomistic simulation method. The technical outcomes of the project will facilitate the design and engineering of efficient electrochemical energy conversion and storage systems. The educational efforts of the project will build and incorporate demo devices of electrochemical cells and materials imaging platforms into a series of education and outreach activities both domestically and internationally. The project will train the graduate and undergraduate students with skills in both experimental and simulation methods and provide them with an international collaborative research experience. The project will contribute to efforts to educate the public on the basic mechanisms of renewable energy conversion and storage.The project’s aim is to achieve a thorough atomistic understanding of electrochemical processes by determining the 3D structure of electrode-electrolyte interfaces, including both the surface of the solid electrodes and the liquid solvation layers. The project’s approach will integrate molecular dynamics and density functional theory simulations with 3D atomic-resolution force microscopy experiments to achieve a joint experiment-theory platform for precise understanding and prediction of electrochemical interfaces. The platform will be used to unravel the solvation layer structure that is responsible for energy storage in carbon-based supercapacitors, and the solvent-included atomistic kinetics of electrocatalytic reactions on single-atom catalysts. The project will produce fundamental models of solid-liquid interfaces that consider the inherent atomic-scale heterogeneities. Furthermore, the thorough determination of the atomistic interfacial structure and catalytic activities of single-atom catalysts will shed light on the unconventional scaling relationships of catalysts with nonuniform structures. This will be an important step towards a more predictive, molecular-level theory beyond the widely accepted "Sabatier Principle" for heterogeneous catalysis and electrocatalysis. The results will significantly foster the design and engineering of electrochemical interfaces for low-cost, highly efficient renewable energy applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
可再生能源的全球部署需要有效的电化学系统,例如电池,超级电容器和燃料电池。在大多数这些系统中,能量转换和存储过程完全依赖于固体电极和液体电解质之间的界面。但是,这些电气界面处的基本原子和分子结构仍然弹性。该项目的目的是实现对电极 - 电解质界面的结构和反应动力学的理解,并为各种低成本,基于碳的电化学系统提供设计原理。通过与都柏林大学和阿尔斯特大学的国际合作,PIS将开发一种综合的实验成像 - 原子模拟方法。该项目的技术成果将促进高效电化学转换和存储系统的设计和工程。该项目的教育工作将在国内和国际上建立并纳入电化学细胞和材料成像平台的演示设备。该项目将培训具有实验和模拟方法技能的研究生和本科生,并为他们提供国际协作研究经验。该项目将有助于对公众进行可再生能源转换和存储的基本机制进行教育。该项目的目的是通过确定电极 - 电解质界面的3D结构,包括固体电极表面和液体溶解层,以实现对电化学过程的全部理解。该项目的方法将将分子动力学和密度函数理论模拟与3D原子分辨率显微镜实验相结合,以实现关节实验理论平台,以精确理解和预测电化学接口。该平台将用于揭示负责在碳基超电容器中存储能量的溶液层结构,以及在单原子催化剂上进行电催化反应的溶剂原子动力学。该项目将产生固体界面的基本模型,以考虑固有的原子尺度异质性。此外,单原子催化剂的原子界面结构和催化活性的彻底确定将揭示催化剂与不均匀结构的非常规缩放关系。这将是迈向更具预测性,分子级理论的重要一步,而不是广泛接受的“ sabatier原理”,用于异质催化和电催化。结果将大大促进低成本,高效的可再生能源应用的电化学界面的设计和工程。该奖项反映了NSF的法定任务,并被认为是通过基金会的智力优点和更广泛影响的评估标准通过评估来获得支持的。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yingjie Zhang其他文献
Long-term and Short-term Beta-blockade after Myocardial Infarction
心肌梗死后的长期和短期β受体阻滞剂
- DOI:
10.1016/s0140-6736(82)92230-9 - 发表时间:
1982 - 期刊:
- 影响因子:0
- 作者:
Bo Wang;Xin He;Jingliang Zhang;Yingjie Zhang - 通讯作者:
Yingjie Zhang
Thermal-mechanical coupling calculation method for deformation error of motorized spindle of machine tool
机床电主轴变形误差热力耦合计算方法
- DOI:
10.1016/j.engfailanal.2021.105597 - 发表时间:
2021-10 - 期刊:
- 影响因子:4
- 作者:
Yangfan Li;Yingjie Zhang;Yanqing Zhao;Xiaojun Shi - 通讯作者:
Xiaojun Shi
Scenario Aware Recommendation Algorithm Based on School Enterprise Cooperation
- DOI:
10.1109/aiotcs58181.2022.00121 - 发表时间:
2022-10 - 期刊:
- 影响因子:0
- 作者:
Yingjie Zhang - 通讯作者:
Yingjie Zhang
Garnet-type solid-state electrolytes and interfaces in all-solid-state lithium batteries: progress and perspective
全固态锂电池中石榴石型固态电解质和界面:进展与展望
- DOI:
10.1016/j.apmt.2020.100750 - 发表时间:
2020-09 - 期刊:
- 影响因子:8.3
- 作者:
Jian Huang;Feng Liang;Minjie Hou;Yingjie Zhang;Kunfeng Chen;Dongfeng Xue - 通讯作者:
Dongfeng Xue
Enhancing charge separation and photocurrent response of CuO nanocone array by constructing CuO/PC61BM hybrid bulk heterojunction
通过构建CuO/PC61BM杂化体异质结增强CuO纳米锥阵列的电荷分离和光电流响应
- DOI:
10.1016/j.matlet.2022.132005 - 发表时间:
2022 - 期刊:
- 影响因子:3
- 作者:
Pujia Cheng;D. Zheng;Yingjie Zhang;Xinqi Chen;Tianjun Chen;Tiansheng Zhang;Fan Wu - 通讯作者:
Fan Wu
Yingjie Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yingjie Zhang', 18)}}的其他基金
CAREER: Elucidating the Correlative Interfacial Solvation, Nucleation, and Growth Processes in Battery Electrolytes
职业:阐明电池电解质中相关的界面溶剂化、成核和生长过程
- 批准号:
2339175 - 财政年份:2024
- 资助金额:
$ 31万 - 项目类别:
Continuing Grant
相似国自然基金
支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
- 批准号:62371263
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
腙的Heck/脱氮气重排串联反应研究
- 批准号:22301211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
- 批准号:52364038
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
- 批准号:82371176
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
- 批准号:82305286
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: U.S. institutions after COVID-19: Trust, accountability, and public perceptions
合作研究:COVID-19 后的美国机构:信任、责任和公众看法
- 批准号:
2422394 - 财政年份:2024
- 资助金额:
$ 31万 - 项目类别:
Standard Grant
Collaborative Research: U.S. Crossroads—Connectivity of the North Atlantic Deep Western Boundary Current through the Subpolar-Subtropical Transition Zone
合作研究:美国十字路口——北大西洋深西边界流通过副极地-副热带过渡区的连通性
- 批准号:
2318948 - 财政年份:2023
- 资助金额:
$ 31万 - 项目类别:
Continuing Grant
Collaborative Research: U.S. Crossroads—Connectivity of the North Atlantic Deep Western Boundary Current through the Subpolar-Subtropical Transition Zone
合作研究:美国十字路口——北大西洋深西边界流通过副极地-副热带过渡区的连通性
- 批准号:
2318947 - 财政年份:2023
- 资助金额:
$ 31万 - 项目类别:
Continuing Grant