Parameterization and Reduction for Nonlinear Stochastic Systems with Applications to Fluid Dynamics
非线性随机系统的参数化和简化及其在流体动力学中的应用
基本信息
- 批准号:2108856
- 负责人:
- 金额:$ 11.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The dynamics of the oceans exhibits several large-scale persistent currents, including the Gulf stream and the Kuroshio in the middle latitudes as prominent examples. Together with other currents in low and high latitudes, they transfer substantial amounts of heat and momentum from the tropics to the polar regions, influencing local and global climate. The balmy jet of seawater also carries a great potential for producing clean offshore carbon-free energy. To understand the spatial and time variabilities of such currents is thus of vital importance for our society. In this project, the investigator will analyze the interplay between intrinsic nonlinearity and extrinsic stochastic forcing in shaping the observed variabilities. To disentangle such interactions and to analyze the impact of noise on dynamical and statistical behaviors of the governing systems are still grand challenges for many practical applications. To address these questions, the investigator will establish a new paradigm for the parameterization and the effective reduction of stochastically forced nonlinear dissipative equations, such as those governing large-scale oceanic flows. The proposed approach relies crucially on a dimension reduction methodology developed recently by the investigator and his colleagues. The knowledge gained in this project is expected to bring new understanding of the fundamental mechanisms of large-scale climate patterns. The award will also provide opportunities for the involvement of graduate students in this research.The dimension reduction methodology adopted and further developed in this project is based on a new stochastic parameterization technique for the unresolved small-scale dynamics of the underlying nonlinear stochastic partial differential equations. The investigator will derive explicit formulas that approximate the small-scale dynamics in terms of both the large-scale dynamics and the history of the noise path, leading thus to low-dimensional stochastic equations involving only large-scale variables. Such reduced equations are able to capture key dynamical features of the original stochastic systems and are much more accessible both theoretically and numerically. The impact of noise on both pattern formation in the classical Rayleigh-Benard convection and time-variability of the double-gyre wind-driven ocean circulation will be studied within the proposed theoretic framework. The parameterization formulas of unresolved small-scale dynamics are rigorously justified in the context of stochastic invariant manifolds. These formulas will be extended in this project to handle parameter regimes that are away from the onset of the first instability using a variational framework. The parameterization is pathwise in nature, which is very well suited for cases when one is not only interested in statistical quantities but also trajectory-wise dynamical behaviors. The formulas involve the history of the noise, which introduces memory into the corresponding reduced equations. This memory effect plays a fundamental role for the reduced equations to capture both qualitatively and quantitatively the dynamical and statistical features of the original system, and it has already been illustrated to be responsible for achieving good modeling performance even in situations that are known to be challenging for other traditional methods to operate. These reduced systems will help us understand better the impact of noise on the studied systems, which are otherwise computationally too expensive to obtain. By studying these reduced models subject to various types of noise, the proposed approach will also bring insights into possible ways of further improving the underlying stochastic models.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
海洋动力学表现出几种大规模的持续洋流,包括墨西哥湾流和中纬度地区的黑潮就是突出的例子。它们与低纬度和高纬度地区的其他洋流一起,将大量的热量和动量从热带转移到极地地区,影响当地和全球气候。温和的海水喷射还具有生产清洁的近海无碳能源的巨大潜力。因此,了解此类电流的空间和时间变化对于我们的社会至关重要。在这个项目中,研究人员将分析内在非线性和外在随机强迫在形成观测到的变异性方面的相互作用。对于许多实际应用来说,解开这种相互作用并分析噪声对控制系统的动力学和统计行为的影响仍然是巨大的挑战。为了解决这些问题,研究人员将建立一个新的范式,用于参数化和有效减少随机强迫非线性耗散方程,例如控制大规模海洋流动的方程。所提出的方法主要依赖于研究者和他的同事最近开发的降维方法。该项目获得的知识预计将为大规模气候模式的基本机制带来新的理解。该奖项还将为研究生参与这项研究提供机会。该项目采用并进一步开发的降维方法基于一种新的随机参数化技术,用于解决基础非线性随机偏微分方程的未解决的小规模动力学问题。研究人员将推导出根据大尺度动力学和噪声路径历史来近似小尺度动力学的显式公式,从而得出仅涉及大尺度变量的低维随机方程。这种简化的方程能够捕获原始随机系统的关键动力学特征,并且在理论上和数值上都更容易理解。 将在所提出的理论框架内研究噪声对经典瑞利-贝纳德对流模式形成和双旋风驱动海洋环流时变性的影响。未解决的小尺度动力学的参数化公式在随机不变流形的背景下得到了严格的证明。这些公式将在本项目中扩展,以使用变分框架处理远离第一次不稳定开始的参数状态。参数化本质上是路径化的,这非常适合人们不仅对统计量感兴趣而且对轨迹动态行为感兴趣的情况。这些公式涉及噪声的历史,这将记忆引入相应的简化方程中。这种记忆效应对于简化方程定性和定量地捕获原始系统的动态和统计特征起着基础作用,并且已经被证明即使在已知具有挑战性的情况下也能实现良好的建模性能以便其他传统方法进行操作。这些简化的系统将帮助我们更好地理解噪声对所研究系统的影响,否则获得这些系统的计算成本太高。通过研究这些受到各种类型噪声影响的简化模型,所提出的方法还将深入了解进一步改进底层随机模型的可能方法。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值进行评估,被认为值得支持以及更广泛的影响审查标准。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Least-squares finite element method for ordinary differential equations
常微分方程的最小二乘有限元法
- DOI:10.1016/j.cam.2022.114660
- 发表时间:2023-01
- 期刊:
- 影响因子:2.4
- 作者:Chung, Matthias;Krueger, Justin;Liu, Honghu
- 通讯作者:Liu, Honghu
Verifiability of the Data-Driven Variational Multiscale Reduced Order Model
数据驱动的变分多尺度降阶模型的可验证性
- DOI:10.1007/s10915-022-02019-y
- 发表时间:2022-11
- 期刊:
- 影响因子:2.5
- 作者:Koc, Birgul;Mou, Changhong;Liu, Honghu;Wang, Zhu;Rozza, Gianluigi;Iliescu, Traian
- 通讯作者:Iliescu, Traian
Conditional Gaussian nonlinear system: A fast preconditioner and a cheap surrogate model for complex nonlinear systems
条件高斯非线性系统:复杂非线性系统的快速预处理器和廉价代理模型
- DOI:10.1063/5.0081668
- 发表时间:2022-05
- 期刊:
- 影响因子:2.9
- 作者:Chen, N.;Li, Y.;Liu, H.
- 通讯作者:Liu, H.
Shock trace prediction by reduced models for a viscous stochastic Burgers equation
通过粘性随机 Burgers 方程的简化模型进行冲击轨迹预测
- DOI:10.1063/5.0084955
- 发表时间:2022-04
- 期刊:
- 影响因子:2.9
- 作者:Chen, N.;Liu, H.;Lu, F.
- 通讯作者:Lu, F.
Transitions in stochastic non-equilibrium systems: Efficient reduction and analysis
随机非平衡系统中的转变:有效还原和分析
- DOI:10.1016/j.jde.2022.11.025
- 发表时间:2022-02-14
- 期刊:
- 影响因子:2.4
- 作者:M. Chekroun;Honghu Liu;J. McWilliams;Shouhong Wang
- 通讯作者:Shouhong Wang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Honghu Liu其他文献
Benggang segmentation via deep exchanging of digital orthophoto map and digital surface model features
通过数字正射影像图和数字表面模型特征深度交换崩岗分割
- DOI:
10.1016/j.iswcr.2023.11.004 - 发表时间:
2023-11-01 - 期刊:
- 影响因子:6.4
- 作者:
Shengyu Shen;Jiasheng Chen;Dongbing Cheng;Honghu Liu;Tong Zhang - 通讯作者:
Tong Zhang
Reduced Order Model Closures: A Brief Tutorial
降阶模型闭包:简要教程
- DOI:
- 发表时间:
2022-02-28 - 期刊:
- 影响因子:0
- 作者:
William Snyder;Changhong Mou;Honghu Liu;O. San;R. Vita;T. Iliescu - 通讯作者:
T. Iliescu
Predictors of Awareness, Accessibility and Acceptability of Pre-exposure Prophylaxis (PrEP) Among English- and Spanish-Speaking Latino Men Who have Sex with Men in Los Angeles, California
加利福尼亚州洛杉矶说英语和西班牙语的男男性行为拉丁裔男性对暴露前预防 (PrEP) 的认知度、可及性和可接受性的预测因素
- DOI:
10.1007/s10903-019-00955-w - 发表时间:
2019-12-10 - 期刊:
- 影响因子:1.9
- 作者:
Ronald A Brooks;A. L;rian;rian;Gabriela E Lazalde;Frank H. Galvan;Honghu Liu;Ying - 通讯作者:
Ying
Testing Statistical Significance of the Area under a Receiving Operating Characteristics Curve for Repeated Measures Design with Bootstrapping
使用 Bootstrapping 测试重复测量设计的接收操作特性曲线下面积的统计显着性
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Honghu Liu;Gang Li - 通讯作者:
Gang Li
A comparison of perceptions of quality of life among adults with spinal cord injury in the United States versus the United Kingdom
美国与英国脊髓损伤成年人生活质量认知的比较
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:3.5
- 作者:
A. Palimaru;W. Cunningham;Marcus Dillistone;Arturo Vargas‐Bustamante;Honghu Liu;R. Hays - 通讯作者:
R. Hays
Honghu Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Honghu Liu', 18)}}的其他基金
Collaborative Research: Non-Markovian Reduction of Nonlinear Stochastic Partial Differential Equations, and Applications to Climate Dynamics
合作研究:非线性随机偏微分方程的非马尔可夫约简及其在气候动力学中的应用
- 批准号:
1616450 - 财政年份:2016
- 资助金额:
$ 11.38万 - 项目类别:
Standard Grant
相似国自然基金
基于Spry1/FABP4-FABP5/PPARγ通路调节皮肤CD8+TRM细胞脂质代谢探讨清血毒颗粒合剂减少寻常型银屑病复发机制研究
- 批准号:82360932
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
肝细胞CREG1抑制其富含miR-34的外泌体分泌并减少巨噬细胞的活化,进而延缓肝纤维化的进展
- 批准号:82300713
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
阻断TRPV4通过抑制线粒体内PDHE1α乙酰化减少心衰后恶性室性心律失常的发生的机制研究
- 批准号:82370329
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
靶向p47phox通过抑制NETs生成而减少深静脉血栓形成的分子机制研究
- 批准号:82300153
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Fibulin2通过EGFR-JAK1-STAT1通路抑制巨噬细胞M1型极化减少脓毒症多器官功能障碍发生的机制研究
- 批准号:82302435
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Thermal noise reduction in next-generation cryogenic gravitational wave telescopes through nonlinear physical model fusion data-driven methods
通过非线性物理模型融合数据驱动方法降低下一代低温引力波望远镜的热噪声
- 批准号:
23K03437 - 财政年份:2023
- 资助金额:
$ 11.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Model Reduction for Control-based Continuation of Complex Nonlinear Structures
复杂非线性结构基于控制的连续性的模型简化
- 批准号:
EP/X026027/1 - 财政年份:2023
- 资助金额:
$ 11.38万 - 项目类别:
Fellowship
CAREER: A Nonlinear Model Reduction Framework for Oscillatory Systems and Associated Data-Driven Inference Strategies
职业:振荡系统的非线性模型简化框架和相关的数据驱动推理策略
- 批准号:
2140527 - 财政年份:2022
- 资助金额:
$ 11.38万 - 项目类别:
Continuing Grant
Sex/Gender influences on periodontal disease and diabetes: A population science approach, with software
性别/性别对牙周病和糖尿病的影响:人口科学方法与软件
- 批准号:
10531704 - 财政年份:2022
- 资助金额:
$ 11.38万 - 项目类别:
Numerical Methods for Nonlinear Partial Differential Equations, with applications to Optimal Transportation, and Geometric Data Reduction
非线性偏微分方程的数值方法,及其在最优运输和几何数据简化中的应用
- 批准号:
RGPIN-2016-03922 - 财政年份:2021
- 资助金额:
$ 11.38万 - 项目类别:
Discovery Grants Program - Individual