ACME III: Advanced Cold Molecule Electron Electric Dipole Moment Search
ACME III:高级冷分子电子电偶极矩搜索
基本信息
- 批准号:2136573
- 负责人:
- 金额:$ 376.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-15 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this project is to search for a new fundamental property of the electron, one of the main constituents of matter and a charged component of all atoms. This new property, called an electric dipole moment, can be described as a slight bulge on an otherwise perfect sphere of charge. This seemingly abstruse feature may hold the key to one of the most fundamental mysteries of nature: why is everything in the universe made of matter rather than of antimatter? In accelerator laboratories, whenever energy is converted into particles (according to E=mc2), equal numbers of matter particles and antimatter particles are created. For example, the electron has a counterpart antimatter particle, the anti-electron, which has identical mass but opposite electric charge. Energy can be converted into an electron/anti-electron pair, and conversely an electron and anti-electron can annihilate each other and turn into energy. Just after the Big Bang, energy was converted into particles and anti-particles. Astronomical observations show that since then, essentially all the antimatter annihilated with matter--but a tiny bit of matter was left over. That small excess makes up all of the objects seen in the Universe today. The current framework that describes all known fundamental forces between elementary particles, known as the "Standard Model", cannot explain how this excess of matter survived. However, many mathematical theories have been devised that can explain this "matter-antimatter asymmetry", by positing new forces and particles not yet discovered in any experiment. These same new forces and particles also often lead, according to the same theories, to an electric dipole moment that is large enough to observe in the experiment supported here. Hence, this project is essentially seeking an answer to the question: how is it that matter was slightly preferred over anti-matter at some time in the past, resulting in the physical Universe seen today? In a general sense, this project also advances the range of techniques for precision measurement science, which in the past has led to unexpected breakthroughs in technology such as GPS (the Global Positioning System), new types of sensors, etc. The electric dipole moment (EDM), if it exists, must lie along the spin axis of the electron. In the presence of a nonzero EDM, an electric field will induce a torque on the electron, resulting in precession of the spin about the field. This spin precession angle is the experimental signal. The huge internal electric field of a polar molecule, ThO, is used to amplify this observable effect. The internal structure of ThO also suppresses possible systematic errors. A cryogenic molecular beam source that delivers an unprecedented high flux of molecules is used. Lasers and optical techniques put the ThO molecules in usable coherent superpositions and then probe the quantum interference that signals the electron's spin precession. Over the previous grant period, a version of these methods was used to make the most sensitive measurement of the electron's EDM. This result was consistent with a zero value for the EDM. However, many theories of what lies beyond the Standard Model of particle physics predict that, with improved sensitivity, detection of the EDM is likely. In this project, methods to greatly improve the sensitivity of the experiment will be introduced. These include focusing of the molecular beam and a use of longer interaction region to increase the time that a torque acts on the EDM. Improvements to reduce systematic errors observed in the previous experiment, such as the use of more carefully controlled magnetic fields and low-birefringence optical elements, will also be incorporated.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的目的是寻找电子的新基本属性,这是物质的主要成分之一,也是所有原子的收费组成部分。这个称为电偶极力矩的新属性可以描述为在原本完美的电荷领域上的轻微凸起。这个看似深深的特征可能是自然界最基本的奥秘之一的钥匙:为什么宇宙中的一切都是由物质而不是反物质制成的?在加速器实验室中,每当能量转换为颗粒(根据E = MC2)时,就会产生相等数量的物质颗粒和反物质颗粒。例如,电子具有对应反物质粒子的抗电子粒子,该粒子具有相同的质量,但电荷相反。能量可以转换为电子/抗电子对,相反,电子和反电子可以互相消灭并变成能量。大爆炸之后,能量转化为颗粒和抗粒子。天文观察表明,从那时起,从本质上讲,所有用物质歼灭的反物质 - 但剩下的一小部分。那个小的多余构成了当今宇宙中看到的所有物体。当前描述基本颗粒(称为“标准模型”)之间所有已知基本力的框架无法解释物质过剩的生存方式。但是,已经设计了许多数学理论,可以通过提出任何实验中尚未发现的新力和粒子来解释这种“物质抗逆念不对称”。根据相同的理论,这些相同的新力和颗粒也经常引导到一个足够大的电动偶极矩,以便在此处支持的实验中观察到。因此,这个项目实质上是在寻求一个问题:过去某个时候,这与反物质有何偏爱,导致今天看到的物理宇宙?从一般意义上讲,该项目还推进了精确测量科学的技术范围,过去,这导致了技术的意外突破,例如GPS(全球定位系统),新型传感器等。电动偶极矩(EDM)(如果存在),则必须沿着电子的自旋轴进行。在存在非零EDM的情况下,电场将在电子上诱导扭矩,从而导致旋转围绕场的旋转。这种自旋进度角是实验信号。极性分子的巨大内部电场用于扩增这种可观察的效果。 THO的内部结构还抑制了可能的系统错误。使用的低温分子束来源使用了前所未有的高通量分子。激光器和光学技术将Tho分子放入可用的相干叠加中,然后探测信号的量子干扰,以表明电子的自旋进动。在上一个赠款期间,这些方法的版本用于对电子EDM进行最敏感的测量。该结果与EDM的零值一致。但是,许多超出标准粒子物理模型的理论预测,随着灵敏度的提高,可能会检测EDM。在这个项目中,将引入大大提高实验灵敏度的方法。这些包括聚焦分子束和使用较长的相互作用区域以增加扭矩在EDM上作用的时间。 还将合并以减少上一个实验中观察到的系统错误的改进,例如使用更仔细控制的磁场和低射流光学元素。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的审查标准来通过评估来支持的。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
High-sensitivity low-noise photodetector using a large-area silicon photomultiplier
使用大面积硅光电倍增管的高灵敏度低噪声光电探测器
- DOI:10.1364/oe.475109
- 发表时间:2023
- 期刊:
- 影响因子:3.8
- 作者:Masuda, Takahiko;Hiramoto, Ayami;Ang, Daniel G.;Meisenhelder, Cole;Panda, Cristian D.;Sasao, Noboru;Uetake, Satoshi;Wu, Xing;DeMille, David P.;Doyle, John M.
- 通讯作者:Doyle, John M.
Measurement of the H3Δ1 radiative lifetime in ThO
ThO 中 H3Î1 辐射寿命的测量
- DOI:10.1103/physreva.106.022808
- 发表时间:2022
- 期刊:
- 影响因子:2.9
- 作者:Ang, D. G.;Meisenhelder, C.;Panda, C. D.;Wu, X.;DeMille, D.;Doyle, J. M.;Gabrielse, G.
- 通讯作者:Gabrielse, G.
Measurement of the H3∆₁ Radiative Lifetime in ThO
ThO 中 H3→辐射寿命的测量
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Ang, D.G.;Meisenhelder, C.;Panda, C.D.;DeMille, D.;Doyle, J.M.;Gabrielse, G.
- 通讯作者:Gabrielse, G.
SiPM module for the ACME III electron EDM search
用于 ACME III 电子 EDM 搜索的 SiPM 模块
- DOI:10.1016/j.nima.2022.167513
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Hiramoto, A.;Masuda, T.;Ang, D.G.;Meisenhelder, C.;Panda, C.;Sasao, N.;Uetake, S.;Wu, X.;Demille, D.;Doyle, J.M.
- 通讯作者:Doyle, J.M.
Electrostatic focusing of cold and heavy molecules for the ACME electron EDM search
用于 ACME 电子 EDM 搜索的冷分子和重分子静电聚焦
- DOI:10.1088/1367-2630/ac8014
- 发表时间:2022
- 期刊:
- 影响因子:3.3
- 作者:Wu, X.;Hu, P.;Han, Z.;Ang, D. G.;Meisenhelder, C.;Gabrielse, G.;Doyle, J. M.;DeMille, D.
- 通讯作者:DeMille, D.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David DeMille其他文献
David DeMille的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David DeMille', 18)}}的其他基金
PM: Development Towards a Tabletop Experiment with Unprecedented Sensitivity to Hadronic CP Violation
PM:对强子 CP 破坏具有前所未有的敏感性的桌面实验的开发
- 批准号:
2208024 - 财政年份:2022
- 资助金额:
$ 376.71万 - 项目类别:
Standard Grant
Collaborative Research: MRI: Development of Apparatus for the Cold Molecule Nuclear Time-Reversal EXperiment (CeNTREX)
合作研究:MRI:冷分子核时间反转实验装置(CeNTREX)的开发
- 批准号:
2240234 - 财政年份:2022
- 资助金额:
$ 376.71万 - 项目类别:
Standard Grant
ACME III: Advanced Cold Molecule Electron Electric Dipole Moment Search
ACME III:高级冷分子电子电偶极矩搜索
- 批准号:
1912513 - 财政年份:2019
- 资助金额:
$ 376.71万 - 项目类别:
Continuing Grant
Collaborative Research: MRI: Development of Apparatus for the Cold Molecule Nuclear Time-Reversal EXperiment (CeNTREX)
合作研究:MRI:冷分子核时间反转实验装置(CeNTREX)的开发
- 批准号:
1827906 - 财政年份:2018
- 资助金额:
$ 376.71万 - 项目类别:
Standard Grant
Nuclear Spin-Dependent Parity Violation in Molecules
分子中核自旋相关的宇称不守恒
- 批准号:
1404162 - 财政年份:2014
- 资助金额:
$ 376.71万 - 项目类别:
Continuing Grant
ACME: Advanced Cold Molecule Electron Electric Dipole Moment Search
ACME:高级冷分子电子电偶极矩搜索
- 批准号:
1404146 - 财政年份:2014
- 资助金额:
$ 376.71万 - 项目类别:
Continuing Grant
Nuclear Spin-Dependent Parity Nonconservation in Molecules
分子中核自旋相关的宇称不守恒
- 批准号:
1068575 - 财政年份:2011
- 资助金额:
$ 376.71万 - 项目类别:
Continuing Grant
Search for the Electron Electric Dipole Moment using PbO Molecules
使用 PbO 分子搜索电子电偶极矩
- 批准号:
0855566 - 财政年份:2009
- 资助金额:
$ 376.71万 - 项目类别:
Standard Grant
ACME: Advanced Cold Molecule Electron Electric Dipole Moment Search
ACME:高级冷分子电子电偶极矩搜索
- 批准号:
0855575 - 财政年份:2009
- 资助金额:
$ 376.71万 - 项目类别:
Continuing Grant
Nuclear Spin-Dependent Parity Nonconservation in Molecules
分子中核自旋相关的宇称不守恒
- 批准号:
0758045 - 财政年份:2008
- 资助金额:
$ 376.71万 - 项目类别:
Continuing Grant
相似国自然基金
人工湿地铁循环驱动As(III)氧化的过程调控及其强化除砷机制
- 批准号:52370204
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
III-E型CRISPR-Cas系统的结构生物学及其应用研究
- 批准号:32371276
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
乙肝肝纤维化进程咪唑丙酸通过mTORC1通路调控III型固有淋巴细胞糖脂代谢重编程及机制研究
- 批准号:82370622
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
生物炭表面结构属性对Fe(II)氧化诱导As(III)氧化截污的影响机制
- 批准号:42307492
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
铁载体与Fe(III)相互作用过程的铁同位素分馏及机理的模拟实验研究
- 批准号:42377264
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
ECCS-EPSRC - Advanced III-N Devices and Circuit Architectures for mm-Wave Future-Generation Wireless Communications
ECCS-EPSRC - 用于毫米波下一代无线通信的先进 III-N 器件和电路架构
- 批准号:
EP/X012123/1 - 财政年份:2023
- 资助金额:
$ 376.71万 - 项目类别:
Research Grant
Countering sympathetic vasoconstriction during skeletal muscle exercise as an adjuvant therapy for DMD
骨骼肌运动期间对抗交感血管收缩作为 DMD 的辅助治疗
- 批准号:
10735090 - 财政年份:2023
- 资助金额:
$ 376.71万 - 项目类别:
Combining immunotherapy with molecularly targeted radiation therapy
免疫治疗与分子靶向放射治疗相结合
- 批准号:
10736873 - 财政年份:2023
- 资助金额:
$ 376.71万 - 项目类别:
Revisiting Antiangiogenic Therapy to Target Hormone-Sensitive Prostate Cancer Metabolism
重新审视抗血管生成疗法以靶向激素敏感的前列腺癌代谢
- 批准号:
10671250 - 财政年份:2023
- 资助金额:
$ 376.71万 - 项目类别:
Impact of Autonomic Dysfunction on Multi-Organ Dysfunction following Severe TBI: The AUTO-BOOST Study
严重 TBI 后自主神经功能障碍对多器官功能障碍的影响:AUTO-BOOST 研究
- 批准号:
10607731 - 财政年份:2023
- 资助金额:
$ 376.71万 - 项目类别: