Collaborative Research: CNS Core: Medium: Information Freshness in Scalable and Energy Constrained Machine to Machine Wireless Networks

合作研究:CNS 核心:中:可扩展且能量受限的机器对机器无线网络中的信息新鲜度

基本信息

  • 批准号:
    2107363
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

With the ever increasing importance of connected devices in smart home, digital healthcare, precision agriculture, smart city, environment and natural disaster monitoring, etc., it is of paramount interest to design the next generation wireless network architecture that can simultaneously support better services while accommodating sharply exponential growth rates of deployment far exceeding the addition of newly available bandwidth. This project will design and analyze new near-optimal machine-to-machine (M2M) network protocols based on the key concept that the quality of service of the machine-based traffic is largely determined by how timely or how fresh the information can be delivered to the destination, instead of the sheer quantity of the delivered messages. With this new shift of design paradigm to information freshness optimization, this project develops novel tools and techniques to quantify and improve the information freshness while meeting the practical requirements of wireless M2M networks, especially on the scalability, energy efficiency, and low-complexity autonomous distributed solutions. The results would significantly advance the state-of-the-art knowledge on M2M wireless network architectures, and propel robust and continuous development of M2M applications by minimizing the battery consumption, increasing the network capacity, and improving the temporal “connectedness” among the smart devices, a critical step forward when realizing the societal impact of Internet-of-Things. To further broaden the participation in network science and computing, the project will implement multiple inclusive mechanisms that increase leadership and participation from women and under-represented groups in a national high-profile annual research workshop (IMACCS) that is being held at the Ohio State University. Several important technical challenges of M2M information freshness optimization will be addressed in this project, including (i) Optimal network coordination when any back and forth message always experiences some random delay, which results in delayed command-&-response in every aspect of the network operations. (ii) Lack of distributional knowledge. Since the delay distributions in practical networks are difficult to estimate and constantly change over time, any practically viable solution must automatically adapt to the underlying unknown delay distributions. (iii) Energy efficiency. Many smart devices are battery limited, which prompts the need for energy-centric, low-complexity distributed network protocol designs. This project will address the above key challenges and develop the analytical foundations for controlling and optimizing information freshness in wireless M2M networks, resulting in fully distributed provably efficient algorithms and protocols that will be extensively evaluated on a large-scale fully programmable 5G wireless network testbed at Rice University.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着互联设备在智能家居、数字医疗、精准农业、智慧城市、环境和自然灾害监测等领域的重要性日益增加,设计能够同时支持更好的服务和更好的服务的下一代无线网络架构至关重要。该项目将基于机器服务质量这一关键概念来设计和分析新的近乎最优的机器对机器 (M2M) 网络协议。基础流量很大程度上取决于如何通过将设计范式向信息新鲜度优化的新转变,该项目开发了新颖的工具和技术来量化和提高信息新鲜度。满足无线 M2M 网络的实际要求,特别是在可扩展性、能源效率和低复杂性自主分布式解决方案方面,其结果将显着推进 M2M 无线网络架构的最新知识,并推动稳健和连续的发展。发展M2M 应用通过最大限度地减少电池消耗、增加网络容量并改善智能设备之间的临时“连接性”,这是实现物联网社会影响的关键一步,进一步扩大对网络科学和技术的参与。在计算方面,该项目将实施多种包容性机制,以提高妇女和代表性不足群体在俄亥俄州立大学举办的全国性高调年度研究研讨会 (IMACCS) 中的领导力和参与度。 M2M 信息的几个重要技术挑战。新鲜度优化将得到解决在这个项目中,包括(i)当任何来回消息总是经历一些随机延迟时的最佳网络协调,这会导致网络操作各个方面的命令和响应延迟。实际网络中的延迟分布很难估计,并且会随着时间的推移而不断变化,任何实际可行的解决方案都必须自动适应潜在的未知延迟分布(iii)许多智能设备的电池有限,这提示需要以能源为中心。 、低复杂度分布式网络协议该项目将解决上述关键挑战,并为控制和优化无线 M2M 网络中的信息新鲜度奠定分析基础,从而产生完全分布式、可证明有效的算法和协议,并将在大规模完全可编程 5G 无线网络上进行广泛评估。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Coded Caching with Full Heterogeneity: Exact Capacity of The Two-User/Two-File Case
完全异构的编码缓存:两个用户/两个文件情况下的精确容量
Age-Optimal Low-Power Status Update over Time-Correlated Fading Channel
通过时间相关衰落通道进行年龄优化低功耗状态更新
  • DOI:
    10.1109/tmc.2022.3160050
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    7.9
  • 作者:
    Yao, Guidan;Bedewy, Ahmed;Shroff, Ness B.
  • 通讯作者:
    Shroff, Ness B.
Optimizing Sampling for Data Freshness: Unreliable Transmissions with Random Two-way Delay
优化采样以保证数据新鲜度:具有随机双向延迟的不可靠传输
  • DOI:
    10.1109/infocom48880.2022.9796895
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pan, Jiayu;Bedewy, Ahmed M.;Sun, Yin;Shroff, Ness B.
  • 通讯作者:
    Shroff, Ness B.
Minimizing Age of Information via Scheduling over Heterogeneous Channels
通过异构通道调度最小化信息年龄
  • DOI:
    10.1145/3466772.3467040
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pan, Jiayu;Bedewy, Ahmed M.;Sun, Yin;Shroff, Ness B.
  • 通讯作者:
    Shroff, Ness B.
How Useful is Delayed Feedback in AoI Minimization - A Study on Systems With Queues in Both Forward and Backward Directions
延迟反馈在 AoI 最小化中有何用处 - 对具有前向和后向队列的系统的研究
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chih-Chun Wang其他文献

Chih-Chun Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chih-Chun Wang', 18)}}的其他基金

CIF: Small: Fundamental Communication Latency Limits Beyond the Traditional Block-Coding Architecture
CIF:小:超越传统块编码架构的基本通信延迟限制
  • 批准号:
    2309887
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Travel: CIF: Student Travel Support for the 2023 IEEE International Symposium on Information Theory
旅行:CIF:2023 年 IEEE 国际信息论研讨会的学生旅行支持
  • 批准号:
    2310925
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CIF: Small: Timing Optimization Over Random Network Asynchrony - Theory And Distributed Algorithms
CIF:小:随机网络异步的时序优化 - 理论和分布式算法
  • 批准号:
    2008527
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CIF: Small: Collaborative Research: Perishable Network Information Flow
CIF:小型:协作研究:易腐烂的网络信息流
  • 批准号:
    1618475
  • 财政年份:
    2016
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Physical Dynamics Aware Coding for Communications in Cyber Physical Systems: Analysis, Algorithms and Implementation
协作研究:网络物理系统中通信的物理动力学感知编码:分析、算法和实现
  • 批准号:
    1407603
  • 财政年份:
    2014
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CIF: Small: Network Information Theory Meets Network Optimization: Optimal Linear Network Coding for Packet Erasure Networks
CIF:小型:网络信息理论与网络优化的结合:数据包擦除网络的最优线性网络编码
  • 批准号:
    1422997
  • 财政年份:
    2014
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
NeTS: Medium: Collaborative Research: Unifying Network Coding and Cross-Layer Optimization for Wireless Mesh Networks: From Theory to Distributed Algorithms to Implementation
NeTS:媒介:协作研究:无线网状网络的统一网络编码和跨层优化:从理论到分布式算法再到实现
  • 批准号:
    0905331
  • 财政年份:
    2009
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CAREER: Next Generation Network Coding: Distributed Design Via Coded Feedback
职业:下一代网络编码:通过编码反馈进行分布式设计
  • 批准号:
    0845968
  • 财政年份:
    2009
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant

相似国自然基金

失重效应影响中枢神经系统药物脑空间分布及药动学的机制和调控研究
  • 批准号:
    82373939
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
LncMOB3A-2编码多肽在肠外致病性大肠杆菌入侵中枢神经系统中的作用机制研究
  • 批准号:
    32302954
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
S100A9作为万古霉素儿童中枢神经系统抗感染个体化治疗预测因子的机制研究和量效分析
  • 批准号:
    82304631
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
染色质重塑因子CHD3调控中枢神经系统少突胶质细胞发育的机制研究
  • 批准号:
    82301950
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于人体镜像中枢神经系统和信任度的假肢互适应机制研究
  • 批准号:
    62363006
  • 批准年份:
    2023
  • 资助金额:
    31 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Collaborative Research: CNS Core: Small: Accelerating Serverless Cloud Network Performance
协作研究:CNS 核心:小型:加速无服务器云网络性能
  • 批准号:
    2229454
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CISE-MSI: RCBP-RF: CNS: ESD4CDaT - Efficient System Design for Cancer Detection and Treatment
合作研究:CISE-MSI:RCBP-RF:CNS:ESD4CDaT - 癌症检测和治疗的高效系统设计
  • 批准号:
    2318573
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Center of Biomedical Research Excellence in CNS Metabolism
中枢神经系统代谢生物医学卓越研究中心
  • 批准号:
    10557542
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2230945
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
  • 批准号:
    2343863
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了