NSF Engineering Research Center for Hybrid Autonomous Manufacturing Moving from Evolution to Revolution (ERC-HAMMER)
NSF 混合自主制造工程研究中心从进化到革命 (ERC-HAMMER)
基本信息
- 批准号:2133630
- 负责人:
- 金额:$ 2593.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Cooperative Agreement
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The Engineering Research Center, Hybrid Autonomous Manufacturing, Moving from Evolution to Revolution (HAMMER), will advance national goals to assert American leadership in advanced manufacturing by developing and transitioning new manufacturing technologies to industry use. Simultaneously, the Center will drive new technical education and provide credentials that will prepare, upskill, or reskill the relevant workforce, and expand capabilities across the manufacturing supply chain to meet national needs. Core partners of the Center include The Ohio State University, Northwestern University, North Carolina Agricultural and Technical State University, Case Western Reserve University, and the University of Tennessee. They will work with collaborators from more than 70 industries, educational, and technical organizations to develop and implement new manufacturing technologies for agile, high-performance and quality-assured components. Through basic, applied, and translational research, HAMMER will accelerate the development and deployment of intelligent autonomous manufacturing systems that will use multiple processes to control material properties and component dimensions to allow rapid customization and high assured performance. These systems will learn from each operation, improving themselves over time. Importantly, as HAMMER works to develop a new class of engineers and technicians, it will also actively work to enhance diversity in the manufacturing talent pipeline, building on the evidence-based success of Fab Labs and Makerspaces to attract students and improve outcomes. Special emphasis will be focused on including urban, military, and Appalachian communities in educational pipeline programs. Ultimately, HAMMER will ensure this country’s competitive advantage, rebuild the U.S. industrial base, create new high-skilled, highly paid jobs, and unleash American ingenuity by providing cost-effective, local, customized production. HAMMER’s primary goal is to enable the concurrent design of products with novel manufacturing processes using hybrid (or multi-tool) manufacturing systems and pathways. This approach will automate and greatly extend the flexibility and ingenuity of practicing human artisans. The HAMMER framework will use designs that will enable leveraging recent developments in robotics and sensors, leading to novel convergent processes. New control, autonomy, and intelligence approaches will guide, and learn from prior manufacturing processes. Quality will be assured through understanding and predicting the local structure and properties of the material being processed within quantified uncertainty limits. Ultimately, HAMMER will advance the current state of technology to unite design, tools, artificial intelligence and computational materials engineering into a single framework, enabling the agile production of components. These components will possess locally optimized materials chemistry, microstructure, and properties in ways that are not attainable currently. The relevant systems are expected to improve in efficiency and performance with experience. Specific use cases to be considered include: 1) numerically controlled deformation sequences and equipment to create complex components that may be currently produced as closed die forgings, but with reduced lead-time and improved performance, 2) employing numerically-controlled deformation to locally optimize properties in additively manufactured components, 3) expanding capabilities for point-of-care manufacturing wherein automated operations including deformation are used to rapidly tailor medical devices to the patient anatomy, and 4) developing low-cost, desktop training systems that provide students hands-on learning in programming, operating, and maintaining new manufacturing systems, as well as experiences creating new physical products using incremental deformation and hybrid processes. Strong partnerships with industry, educational and technical organizations will enable HAMMER to train personnel at many levels from pre-college to practicing engineers. HAMMER will lead next-generation certification standards to facilitate widespread adoption of these technologies by the associated workforce.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
混合自主制造工程研究中心,从进化到革命(HAMMER),将通过开发新的制造技术并将其转化为工业应用来推进国家目标,以维护美国在先进制造领域的领导地位。该中心的核心合作伙伴包括俄亥俄州立大学、西北大学、北卡罗来纳州立农业技术大学、凯斯大学。西部保留地他们将与来自 70 多个行业、教育和技术组织的合作者合作,通过基础、应用和转化来开发和实施敏捷、高性能和质量有保证的组件的新制造技术。通过研究,HAMMER 将加速智能自主制造系统的开发和部署,该系统将使用多个流程来控制材料属性和组件尺寸,以实现快速定制和高保证的性能,这些系统将从每次操作中学习,并随着时间的推移不断改进。 HAMMER 致力于开发新的它还将积极致力于增强制造人才渠道的多样性,以 Fab Labs 和 Makerspaces 的循证成功为基础,以吸引学生并改善成果,特别注重包括城市、军事、最终,HAMMER 将确保这个国家的竞争优势,重建美国的工业基础,创造新的高技能、高薪工作,并通过提供具有成本效益的本地定制生产来释放美国人的创造力。 HAMMER 的主要目标是使用混合(或多工具)制造系统和路径实现产品与新颖制造流程的并行设计,这种方法将实现自动化并极大地扩展人类工匠的灵活性和独创性。这将能够利用机器人和传感器的最新发展,从而产生新的融合流程,并通过了解和预测现有的制造流程来指导和学习质量。正在加工的材料最终,HAMMER 将推进当前的技术水平,将设计、工具、人工智能和计算材料工程整合到一个框架中,从而实现组件的敏捷生产。相关系统预计将随着经验的积累而提高效率和性能,具体用例包括:1)数控变形序列和设备,以创建当前可能生产的复杂部件。闭式模锻件,但是缩短交货时间并提高性能,2) 采用数控变形来局部优化增材制造组件的性能,3) 扩大现场护理制造能力,使用包括变形在内的自动化操作来快速定制医疗设备,以适应医疗设备的需求。患者解剖学;4) 开发低成本桌面培训系统,为学生提供编程、操作和维护新制造系统的实践学习,以及使用增量变形和混合流程创建新物理产品的经验。工业、教育和技术组织将使 HAMMER 能够培训从大学预科生到执业工程师的多个级别的人员。HAMMER 将引领下一代认证标准,以促进相关劳动力广泛采用这些技术。该奖项反映了 NSF 的法定使命,并被认为值得支持。通过使用基金会的智力优点和更广泛的影响审查标准进行评估。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Robot forming: Automated English wheel as an avenue for flexibility and repeatability
机器人成型:自动化英式轮作为灵活性和可重复性的途径
- DOI:10.1016/j.mfglet.2023.08.104
- 发表时间:2023
- 期刊:
- 影响因子:3.9
- 作者:Huang, Dean;Suarez, Derick;Kang, Putong;Ehmann, Kornel;Cao, Jian
- 通讯作者:Cao, Jian
A Framework for the Optimal Selection of High-Throughput Data Collection Workflows by Autonomous Experimentation Systems
- DOI:10.1007/s40192-022-00280-5
- 发表时间:2022-10-31
- 期刊:
- 影响因子:3.3
- 作者:Casukhela, Rohan;Vijayan, Sriram;Niezgoda, Stephen R.
- 通讯作者:Niezgoda, Stephen R.
Hybrid manufacturing by additive friction stir deposition, metrology, CNC machining, and microstructure analysis
通过增材搅拌摩擦沉积、计量、数控加工和微观结构分析进行混合制造
- DOI:10.1016/j.mfglet.2023.08.021
- 发表时间:2023
- 期刊:
- 影响因子:3.9
- 作者:Kincaid, Joshua;Zameroski, Ross;Charles, Elijah;No, Timothy;Bohling, John;Compton, Brett;Schmitz, Tony
- 通讯作者:Schmitz, Tony
Error homogenization in physics-informed neural networks for modeling in manufacturing
- DOI:10.1016/j.jmsy.2023.09.013
- 发表时间:2023-12
- 期刊:
- 影响因子:12.1
- 作者:Clayton Cooper;Jianjing Zhang;R. X. Gao
- 通讯作者:Clayton Cooper;Jianjing Zhang;R. X. Gao
Blockchain-Empowered Distributed Additive Manufacturing-as-a-Service: An Architectural Perspective
区块链赋能的分布式增材制造即服务:架构视角
- DOI:10.1109/mnet.129.2200459
- 发表时间:2023
- 期刊:
- 影响因子:9.3
- 作者:Monroy, Sergio A.;Li, Pan;Fang, Yuguang;Loparo, Kenneth A.
- 通讯作者:Loparo, Kenneth A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Glenn Daehn其他文献
气化冲击焊飞板碰撞速度测量及影响因素分析
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
陈树君;苏珊;肖珺;毛羽;Anupam Vivek;Glenn Daehn - 通讯作者:
Glenn Daehn
Emerging Opportunities in Distributed Manufacturing: Results and Analysis of an Expert Study
分布式制造中的新兴机遇:专家研究的结果和分析
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:3.3
- 作者:
Glenn Daehn;Craig Blue;Charles Johnson;John J. Lewandowski;Tom Mahoney;C. Okwudire;Tali Rossman;Tony Schmitz;Rebecca Silveston - 通讯作者:
Rebecca Silveston
Joining Aluminium Alloy 5A06 to Stainless Steel 321 by Vaporizing Foil Actuators Welding with an Interlayer
通过中间层焊接汽化箔致动器将铝合金 5A06 与不锈钢 321 连接起来
- DOI:
10.3390/met9010043 - 发表时间:
2019-01 - 期刊:
- 影响因子:2.9
- 作者:
Shan Su;Shujun Chen;Yu Mao;Jun Xiao;Anupam Vivek;Glenn Daehn - 通讯作者:
Glenn Daehn
Vaporizing foil actuator welding technique for dissimilar joining of AA3003 and SS321
AA3003 和 SS321 异种材料连接的气化箔执行器焊接技术
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:3.4
- 作者:
Shan Su;Shujun Chen;Jun Xiao;Yu Mao;Vivek Anupam;Glenn Daehn - 通讯作者:
Glenn Daehn
Glenn Daehn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Glenn Daehn', 18)}}的其他基金
Workshop: Charting the Course: Next Generation Career and Technical Education for Advanced Manufacturing; Columbus, Ohio; 16-17 May 2019
研讨会:制定课程:先进制造的下一代职业和技术教育;
- 批准号:
1933856 - 财政年份:2019
- 资助金额:
$ 2593.84万 - 项目类别:
Standard Grant
MRI: Development of a Dynamic Material Processing and Testing Instrument
MRI:动态材料加工和测试仪器的开发
- 批准号:
1531785 - 财政年份:2015
- 资助金额:
$ 2593.84万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Fundamental Research on Impact Welding of Aluminum and Steel
GOALI/合作研究:铝和钢冲击焊接的基础研究
- 批准号:
1538736 - 财政年份:2015
- 资助金额:
$ 2593.84万 - 项目类别:
Standard Grant
GOALI: Formability in High Velocity Forming
目标:高速成形中的成形性
- 批准号:
9813244 - 财政年份:1998
- 资助金额:
$ 2593.84万 - 项目类别:
Continuing Grant
Mismatch Plasticity Via Pressure Cycling
通过压力循环实现塑性失配
- 批准号:
9705558 - 财政年份:1997
- 资助金额:
$ 2593.84万 - 项目类别:
Continuing Grant
Non-isothermal Creep of Metal Matrix Composites
金属基复合材料的非等温蠕变
- 批准号:
9204500 - 财政年份:1992
- 资助金额:
$ 2593.84万 - 项目类别:
Continuing Grant
相似国自然基金
层工程诱导的Bi5Ti3FeO15基弛豫铁电薄膜储能特性研究
- 批准号:12364016
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
靶向调控肿瘤3羟基丁酸代谢的工程菌在肿瘤治疗中的作用及机制研究
- 批准号:82373178
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
涡流驱动熔融铜渣多相贫化过程的反应工程学研究
- 批准号:52304324
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
原位诱导自体自组织组织工程皮肤的应用基础研究
- 批准号:82372514
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
战略与管理研究类:电气科学与工程学科研究方向与关键词优化
- 批准号:52342702
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:专项基金项目
相似海外基金
2024 - 2025 National Science Foundation (NSF) Computer and Information Science and Engineering (CISE) Research Experiences for Undergraduates (REU) Principal Investigator Workshops
2024 - 2025 美国国家科学基金会 (NSF) 计算机与信息科学与工程 (CISE) 本科生研究经验 (REU) 首席研究员研讨会
- 批准号:
2407231 - 财政年份:2024
- 资助金额:
$ 2593.84万 - 项目类别:
Continuing Grant
2023 National Science Foundation (NSF) Computer and Information Science and Engineering (CISE) Research Experiences for Undergraduates (REU) Principal Investigator (PI) Workshop
2023年美国国家科学基金会(NSF)计算机与信息科学与工程(CISE)本科生研究经验(REU)首席研究员(PI)研讨会
- 批准号:
2316050 - 财政年份:2023
- 资助金额:
$ 2593.84万 - 项目类别:
Standard Grant
NSF Engineering Research Center for Smart Streetscapes (CS3)
NSF 智能街景工程研究中心 (CS3)
- 批准号:
2133516 - 财政年份:2022
- 资助金额:
$ 2593.84万 - 项目类别:
Cooperative Agreement
NSF Engineering Research Center for Advancing Sustainable and Distributed Fertilizer Production (CASFER)
NSF 促进可持续和分布式肥料生产工程研究中心 (CASFER)
- 批准号:
2133576 - 财政年份:2022
- 资助金额:
$ 2593.84万 - 项目类别:
Cooperative Agreement
NSF Engineering Research Center for Precision Microbiome Engineering (PreMiEr)
NSF 精密微生物组工程研究中心 (PreMiEr)
- 批准号:
2133504 - 财政年份:2022
- 资助金额:
$ 2593.84万 - 项目类别:
Cooperative Agreement