III:Small: Interpretable Deep Generative Models for Drug Development
III:Small:可解释的药物开发深度生成模型
基本信息
- 批准号:2133650
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-11-01 至 2024-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Drug discovery is time-consuming and costly: it takes approximately 10-15 years and between $500 million to $2 billion to fully develop a new drug. Molecule optimization is a critical step in drug discovery to improve desired properties of drug candidates through chemical modification. For example, in lead (molecules showing both activity and selectivity towards a given target) optimization, the chemical structures of the lead molecules can be altered to improve their selectivity and specificity. Conventionally, this process is facilitated based on knowledge, intuition and experience of medicinal chemists, and is done via fragment-based screening or synthesis. Such an approach is not scalable. The objective of this project is to develop a new class of Artificial Intelligence (AI) methods and tools to conduct in silico molecule generation. Specifically, this project will focus on the following important aspects in AI-based in silico molecule optimization: 1) major scaffold retention, 2) molecule diversity, 3) molecule synthesizability; 4) multi-property optimization; and 5) interpretability. The central hypothesis underlying the proposed research is that the increasing amount of publicly available molecule data, including molecule properties, synthesis pathways and drug-likeness, contains a wealth of information that, if properly analyzed and utilized, can provide key insights in revealing, characterizing and automating the computational molecule generation and optimization process.Developing a new class of AI methods for in silico drug molecule optimization will require the development of novel AI models and methods for in silico molecule optimization. Examining designs based on new deep generative models, deep graph convolutional networks, conditional sampling approaches and reinforcement learning methods that learn from pairs of molecular graphs, and accordingly generate new molecular graphs with improved biochemical and biophysical properties, is necessary. The proposed research will also provide a holistic framework to explore prospective molecules that are sufficiently different from one another; and will investigate molecular graph search approaches and Bayesian optimization methods to guide search in the latent embedding (representation) space. For multi-property optimization, the proposed research will provide a pipeline structure and new reinforcement learning approaches. To understand and facilitate interpretable generative models, the proposed research will develop a set of novel methods including network dissection, perturbation-based attribution methods, self-explaining methods and disentanglement. This project will have substantial societal and educational impacts, and will enhance diversity in STEM through education and research dissemination. The broader scientific contributions of the will be the development of innovative AI methodologies and tools that will aid drug development. These technical innovations will not only address the key computational challenges in generative models for molecules, but also potentially generalize to other problems (e.g. cheminformatics, materials design) in which generation of structural data is highly needed and interpretation of such generation process is critical. The proposed research can potentially reduce the investment costs during drug discovery, increase its successful rate significantly, and ultimately aid in the improvement of the US health care quality.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
药物发现既耗时又昂贵:完全开发一种新药,大约需要10 - 15年,在5亿至20亿美元之间。分子优化是通过化学修饰改善药物候选物质的药物发现中的关键步骤。例如,在铅(显示给定靶标的活性和选择性的分子)优化中,可以改变铅分子的化学结构以提高其选择性和特异性。通常,根据知识,直觉和药物化学家的经验来促进此过程,并且是通过基于碎片的筛查或合成来完成的。这种方法是不可扩展的。该项目的目的是开发一种新的人工智能(AI)方法和工具来生成硅分子。具体而言,该项目将重点放在硅分子优化中基于AI的以下重要方面:1)主要支架保留率,2)分子多样性,3)分子合成性; 4)多专业优化; 5)解释性。 The central hypothesis underlying the proposed research is that the increasing amount of publicly available molecule data, including molecule properties, synthesis pathways and drug-likeness, contains a wealth of information that, if properly analyzed and utilized, can provide key insights in revealing, characterizing and automating the computational molecule generation and optimization process.Developing a new class of AI methods for in silico drug molecule optimization will require the用于硅分子优化的新型AI模型和方法的开发。基于新的深层生成模型,深图卷积网络,条件抽样方法以及从分子图对学习的强化学习方法以及相应地生成具有改进的生化和生物物理特性的新分子图。拟议的研究还将提供一个整体框架,以探索彼此之间完全不同的前瞻性分子。并将研究分子图搜索方法和贝叶斯优化方法,以指导潜在嵌入(表示)空间中的搜索。为了进行多专业优化,拟议的研究将提供管道结构和新的强化学习方法。为了理解和促进可解释的生成模型,拟议的研究将开发一系列新的方法,包括网络解剖,基于扰动的归因方法,自我解释方法和分离。该项目将产生重大的社会和教育影响,并通过教育和研究传播来增强STEM的多样性。该贡献的更广泛的科学贡献将是创新的AI方法和工具的开发,这些方法和工具将有助于药物开发。这些技术创新不仅将解决分子生成模型中的关键计算挑战,而且还可以潜在地推广到其他问题(例如,化学信息,材料设计),在这种问题中,高度必需的结构数据产生,对这种生成过程的解释至关重要。拟议的研究可以潜在地降低药物发现期间的投资成本,大大提高其成功率,并最终有助于提高美国医疗保健质量。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的智力优点评估来支持的,并具有更广泛的影响。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Deep Generative Model for Molecule Optimization via One Fragment Modification.
- DOI:10.1038/s42256-021-00410-2
- 发表时间:2021-12
- 期刊:
- 影响因子:23.8
- 作者:Chen Z;Min MR;Parthasarathy S;Ning X
- 通讯作者:Ning X
Using deep learning for the automated identification of cone and rod photoreceptors from adaptive optics imaging of the human retina
使用深度学习从人类视网膜的自适应光学成像中自动识别视锥细胞和杆状光感受器
- DOI:10.1364/boe.470071
- 发表时间:2022
- 期刊:
- 影响因子:3.4
- 作者:Zhou, Mengxi;Doble, Nathan;Choi, Stacey S.;Jin, Tianyu;Xu, Chenwei;Parthasarathy, Srinivasan;Ramnath, Rajiv
- 通讯作者:Ramnath, Rajiv
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xia Ning其他文献
Application of nitric oxide in modified atmosphere packaging of tilapia (Oreschromis niloticus) fillets
一氧化氮在罗非鱼片气调包装中的应用
- DOI:
10.1016/j.foodcont.2018.11.043 - 发表时间:
2019-04 - 期刊:
- 影响因子:6
- 作者:
Wang Zi Chao;Yan Yuzhen;Fang Zhongxiang;Nisar Tanzeela;Sun Lijun;Guo Yurong;Xia Ning;Wang Huichun;Chen De Wei - 通讯作者:
Chen De Wei
Transcriptome-wide characterization of the WRKY family genes in Lonicera macranthoides and the role of LmWRKY16 in plant senescence
灰花忍冬 WRKY 家族基因的全转录组表征以及 LmWRKY16 在植物衰老中的作用
- DOI:
10.1007/s13258-021-01118-8 - 发表时间:
2021-06 - 期刊:
- 影响因子:2.1
- 作者:
Cao Zhengyan;Wu Peiyin;Gao Hongmei;Xia Ning;Jiang Ying;Tang Ning;Liu Guohua;Chen Zexiong - 通讯作者:
Chen Zexiong
Stationary statistical theory of two-surface multipactor regarding all impacts for efficient threshold analysis
关于有效阈值分析的所有影响的两表面多重因子的平稳统计理论
- DOI:
10.1063/1.5005042 - 发表时间:
2018-01 - 期刊:
- 影响因子:2.2
- 作者:
Lin Shu;Wang Rui;Xia Ning;Li Yongdong;Liu Chunliang - 通讯作者:
Liu Chunliang
Electrochemical immunosensors with protease as the signal label for the generation of peptide-Cu(II) complexes as the electrocatalysts toward water oxidation
以蛋白酶为信号标记的电化学免疫传感器,用于生成肽-Cu(II)复合物作为水氧化的电催化剂
- DOI:
10.1016/j.snb.2019.04.063 - 发表时间:
2019-07 - 期刊:
- 影响因子:8.4
- 作者:
Xia Ning;Deng Dehua;Yang Suling - 通讯作者:
Yang Suling
Recent Advances in Recommender Systems and Future Directions
推荐系统的最新进展和未来方向
- DOI:
10.1007/978-3-319-19941-2_1 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Xia Ning;G. Karypis - 通讯作者:
G. Karypis
Xia Ning的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xia Ning', 18)}}的其他基金
CRII: III: Computational Methods to Explore Big Bioassay Data for Better Compound Prioritization
CRII:III:探索大生物测定数据以更好地确定化合物优先级的计算方法
- 批准号:
1855501 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CRII: III: Computational Methods to Explore Big Bioassay Data for Better Compound Prioritization
CRII:III:探索大生物测定数据以更好地确定化合物优先级的计算方法
- 批准号:
1566219 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
相似国自然基金
面向复杂气候的可解释遥感图像多粒度小目标检测研究
- 批准号:62276037
- 批准年份:2022
- 资助金额:55.00 万元
- 项目类别:面上项目
面向复杂气候的可解释遥感图像多粒度小目标检测研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
基于可解释全景深度学习模型的非小细胞肺癌放射免疫相关肺炎的风险评估
- 批准号:82172865
- 批准年份:2021
- 资助金额:55.00 万元
- 项目类别:面上项目
基于影像病理组学构建可解释的非小细胞肺癌新辅助免疫治疗响应评价方法研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
基于可解释全景深度学习模型的非小细胞肺癌放射免疫相关肺炎的风险评估
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CIF: Small: Interpretable Fair Machine Learning: Frameworks, Robustness, and Scalable Algorithms
协作研究:CIF:小型:可解释的公平机器学习:框架、稳健性和可扩展算法
- 批准号:
2343869 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Leveraging remote blood pressure monitoring and interpretable machine learning to improve clinical workflows for hypertensive disorders of pregnancy
利用远程血压监测和可解释的机器学习来改善妊娠期高血压疾病的临床工作流程
- 批准号:
10822625 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Collaborative Research: CIF: Small: Interpretable Fair Machine Learning: Frameworks, Robustness, and Scalable Algorithms
协作研究:CIF:小型:可解释的公平机器学习:框架、稳健性和可扩展算法
- 批准号:
2246417 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Interpretable Fair Machine Learning: Frameworks, Robustness, and Scalable Algorithms
协作研究:CIF:小型:可解释的公平机器学习:框架、稳健性和可扩展算法
- 批准号:
2153607 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CIF: Small: Interpretable Machine Learning based on Deep Neural Networks: A Source Coding Perspective
CIF:小:基于深度神经网络的可解释机器学习:源编码视角
- 批准号:
2205004 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant