Collaborative Research: ECO-CBET: Putting entropy to work: Leveraging the role of water organization in peptide binding events to selectively recover rare earths

合作研究:ECO-CBET:让熵发挥作用:利用水组织在肽结合事件中的作用来选择性回收稀土

基本信息

  • 批准号:
    2133512
  • 负责人:
  • 金额:
    $ 30.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-15 至 2023-10-31
  • 项目状态:
    已结题

项目摘要

Rare-earth elements are critical components in wind turbines, electric vehicles, and smart phones. The United States imports 100% of its rare earth elements from China, where they are mined and purified through time- and energy-intensive processes. The United States has great potential to recycle rare earth elements from waste streams such as coal industry waters, electronic wastes, and fertilizer mining wastes. This project, a collaboration between Case Western Reserve University, Clemson University, and Pennsylvania State University-University Park, will recover valuable rare earth elements (La, Ce, Nd, Pr) from phosphogypsum—a fertilizer mining waste mixed with radioactive impaired water. Currently, phosphogypsum is piped to open ditches or ponds and stored indefinitely as “stacks”. Today, an estimated more than 200 million tons of rare earth elements are trapped in unprocessed phosphogypsum waste in Florida alone. This source of rare earth elements is presently untapped due to challenges associated with radioactive species and the difficulty of separating the individual elements. Further, stack failures post a threat to the environment as phosphogypsum sites have caused over 200 million gallons of contaminated water to be released to Florida aquifers and surface waters since 1994. Thus, the vision for this project is to discover new separation mechanisms, materials, and processes to recover valuable resources (rare earth elements, fertilizers, clean water) from waste streams of the fertilizer industry, paving the way for a sustainable domestic supply of rare earth elements and a sustainable agriculture sector. Doing so will enable the recycling of an otherwise unusable waste stream and treat impaired waters that threaten local water supplies. Simultaneously, the next generation of engineers will be trained to tackle complex environmental engineering problems at the forefront of the food-energy-water nexus. Educational outreach programs will target the general public using the social media app TikTok and engage local high school students in research experiences and mentoring programs. In addition, interactive activities for K-12 outreach events focused on sustainability and water treatment will be developed.Traditional membrane separation mechanisms rely on differences in size and charge which are insufficient to purify individual rare earth elements due to their similar radii and identical formal charge. This project pursues a multistage separation process in which rare earth elements are 1) extracted from phosphogypsum by chemical digestion, 2) separated from anions and concentrated by electrodialysis, and 3) selectively separated using peptide-functionalized membranes. A key technical goal of this research is to discover the mechanisms that underpin peptide-ion selectivity and leverage those mechanisms to design a new class of highly selective membranes. The thermodynamics of peptide-ion complexation will be studied using X-ray absorption spectroscopy, biomolecular characterization techniques, and multiscale modeling. Machine learning will be employed to predict new peptide structures based on thermodynamic descriptors. Newly discovered peptides will be incorporated into electrospun membranes using “click” chemistry. Techno-economic analysis and life cycle assessment will be performed to quantify the environmental and financial impacts the proposed design and inform iterations of this design. Knowledge generated from this research will broadly enable currently challenging selective separations across the fields of membranes and sorbent materials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
稀土元素是风力涡轮机,电动汽车和智能手机的关键组件。美国从中国进口了100%的稀土元素,它们通过时间和能源密集型过程进行开采和纯化。美国有很大的潜力可以从煤炭水域,电子废物和肥料采矿废物等废物流中回收稀土元素。该项目是Case Western Reserve University,Clemson University和Pennsylvania State University-University Park之间的合作,将从Phosphogypsum中恢复有价值的稀土元素(LA,CE,ND,PR),这是一种与放射性受损水混合的肥料挖掘。目前,将磷型用于打开沟渠或池塘,并无限期存储为“堆栈”。如今,仅在佛罗里达州,估计有超过2亿吨的稀土元素被困在未经处理的磷酸型废物中。由于与放射性物种相关的挑战以及将单个元素分离的困难,因此未开发了这种稀土元素的来源。此外,由于磷酸型站点自1994年以来,堆栈失败对环境构成威胁,因为磷酸型地点已造成超过2亿加仑的被污染的水向佛罗里达含水层和地表水释放出来。该项目的愿景是发现新的分离机制,材料,材料和流程,以发现有价值的资源,稀有的范围,稀有的供应量的繁殖水,供应量的繁殖力,供应量的繁殖层,供应量的繁殖力和繁殖力。可持续农业部门。这样做将使原本无法使用的废物流回收并处理威胁当地供水的水分。同时,下一代工程师将接受培训,以解决食品能量 - 水联系的最前沿的复杂环境工程问题。教育外展计划将使用社交媒体应用Tiktok对准公众,并让当地高中生参与研究经验和心理计划。此外,将开发针对可持续性和水处理的K-12外展活动的互动活动。传统的膜分离机制依赖于大小和电荷的差异,这些差异由于其相似的半径和相同的正式电荷而纯化了单个稀土元素。该项目追求一个多阶段的分离过程,其中稀土元素是1)通过化学消化从磷酸化中提取,2)与阴离子分离并通过电透析浓缩,3)使用肽功能化机制选择性分离。这项研究的关键技术目标是发现基于肽离子选择性的机制,并利用这些机制设计新的高度选择性机制。肽离子络合的热力学将使用X射线抽象光谱,生物分子表征技术和多尺度建模进行研究。将进行机器学习,以根据热力学描述符预测新的肽结构。新发现的肽将使用“点击”化学掺入电纺膜中。将进行技术经济分析和生命周期评估,以量化拟议设计的环境和财务影响,并告知该设计的迭代。这项研究产生的知识将广泛地挑战当前在整个膜和吸附材料领域的选择性分离。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响审查标准,通过评估被认为是珍贵的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rachel Getman其他文献

Rachel Getman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rachel Getman', 18)}}的其他基金

Collaborative Research: ECO-CBET: Putting entropy to work: Leveraging the role of water organization in peptide binding events to selectively recover rare earths
合作研究:ECO-CBET:让熵发挥作用:利用水组织在肽结合事件中的作用来选择性回收稀土
  • 批准号:
    2346163
  • 财政年份:
    2023
  • 资助金额:
    $ 30.8万
  • 项目类别:
    Continuing Grant
Collaborative Research: Combining Operando Spectroscopy and Multi-Scale Modeling to Elucidate the Mechanism of Aqueous Phase Reforming of Oxygenates
合作研究:结合原位光谱学和多尺度建模来阐明含氧化合物水相重整的机制
  • 批准号:
    1764296
  • 财政年份:
    2018
  • 资助金额:
    $ 30.8万
  • 项目类别:
    Standard Grant
CAREER:Hierarchical Modeling for Rational Catalyst Design in Aqueous Conditions
职业:水相条件下合理催化剂设计的分层建模
  • 批准号:
    1554385
  • 财政年份:
    2016
  • 资助金额:
    $ 30.8万
  • 项目类别:
    Standard Grant
Mechanism for Heterogeneously Catalyzed Sugar Alcohol Reactions: Hierarchical Modeling and Experimental Studies
多相催化糖醇反应机理:分层建模和实验研究
  • 批准号:
    1438325
  • 财政年份:
    2014
  • 资助金额:
    $ 30.8万
  • 项目类别:
    Standard Grant

相似国自然基金

多功能菌群协作及对浮萍塘生态功能的长期调控效应与机制研究
  • 批准号:
    32360314
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
面向信息生态复杂性的群体博弈与协作动力学研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    59 万元
  • 项目类别:
    面上项目
乡村旅游社区恢复力的形成机制研究:行动者网络理论视角
  • 批准号:
    41701144
  • 批准年份:
    2017
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
横断山区高山垫状植物与其它植物双向协作共存机制及其对高山生态系统功能及意义研究
  • 批准号:
    31500185
  • 批准年份:
    2015
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
横断山区高山流石滩垫状植物适应策略及协作共存机制的研究
  • 批准号:
    31270005
  • 批准年份:
    2012
  • 资助金额:
    69.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
  • 批准号:
    2342498
  • 财政年份:
    2024
  • 资助金额:
    $ 30.8万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
  • 批准号:
    2342497
  • 财政年份:
    2024
  • 资助金额:
    $ 30.8万
  • 项目类别:
    Standard Grant
Collaborative Research: ECO-CBET: Multi-scale design of liquid hydrogen carriers for spatio-temporal balancing of renewable energy systems
合作研究:ECO-CBET:用于可再生能源系统时空平衡的液氢载体的多尺度设计
  • 批准号:
    2318618
  • 财政年份:
    2023
  • 资助金额:
    $ 30.8万
  • 项目类别:
    Standard Grant
Collaborative Research: ECO-CBET: Multi-scale design of liquid hydrogen carriers for spatio-temporal balancing of renewable energy systems
合作研究:ECO-CBET:用于可再生能源系统时空平衡的液氢载体的多尺度设计
  • 批准号:
    2318619
  • 财政年份:
    2023
  • 资助金额:
    $ 30.8万
  • 项目类别:
    Standard Grant
Collaborative Research: ECO-CBET: Multi-scale design of liquid hydrogen carriers for spatio-temporal balancing of renewable energy systems
合作研究:ECO-CBET:用于可再生能源系统时空平衡的液氢载体的多尺度设计
  • 批准号:
    2318617
  • 财政年份:
    2023
  • 资助金额:
    $ 30.8万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了