Collaborative Research: MODULUS: Nuclear envelope shape change coordination with chromosome segregation in mitosis in fission yeast
合作研究:MODULUS:核膜形状变化与裂殖酵母有丝分裂中染色体分离的协调
基本信息
- 批准号:2133243
- 负责人:
- 金额:$ 110.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-15 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
For over 100 years, biologists have worked to make sense of how cells move chromosomes to the correct locations for successful cell division in a process known as mitosis. Because mitosis depends on dozens of protein types, it is challenging to predict how mitosis works. Therefore, this project is building a mathematical model of mitosis. An analogy for mitosis is that the cell first builds a crane (the mitotic spindle) and then uses it to move large objects (the chromosomes) to their correct places (chromosome segregation). Starting with the details of a subset of the key molecules, including the chromosomes and the mitotic spindle, new algorithms are simulating mitosis as a whole. The model is developed hand-in-hand with experiments in fission yeast. This project is going beyond previous work to address closed mitosis, in which the nuclear envelope remains intact, and chromosome segregation and nuclear division occur together. To understand closed mitosis as a whole, this project is identifying the mechanisms by which the spindle affects the envelope and the envelope affects the spindle for successful mitosis. Building this more realistic model of simultaneous nuclear division and chromosome segregation in mitosis will ultimately allow study of mitosis across life, particularly in nuclear envelope function (closed, semi-open, and open mitosis). Understanding how cells divide is important in the long run for helping correct errors in cell division. The project is developing interdisciplinary education in biophysics, cellular biology, and mathematical biology. The project is extending an international, online biophysics seminar that makes research results broadly available outside elite institutions and at no cost, broadening participation in biophysics.This project is modeling closed mitosis by bringing together membrane and cytoskeletal modeling tools, which are challenging to integrate and implement with tractable algorithms. The first objective is extending a model of mitosis to include a deformable elastic nuclear envelope, to integrate the spindle and chromosomes with boundary-integral and triangulated-membrane models of the nuclear envelope. The second objective is to identify how nuclear envelope forces and deformation drive successful chromosome segregation in closed mitosis, by modeling and measuring envelope shape, spindle dynamics, and chromosome movement in cells with perturbations to the nuclear envelope. The project is developing new algorithms and software for simulation of membrane-cytoskeleton interactions, which are difficult to model currently.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
100多年来,生物学家一直在努力理解细胞如何在称为有丝分裂的过程中将染色体转移到正确的细胞分裂位置。由于有丝分裂取决于数十种蛋白质类型,因此预测有丝分裂的工作原理是一项挑战。因此,该项目正在建立有丝分裂的数学模型。有丝分裂的类比是该细胞首先建立起重机(有丝分裂主轴),然后使用它将大物体(染色体)移至其正确的位置(染色体分离)。 从关键分子子集的细节开始,包括染色体和有丝分裂主轴,新算法正在模拟有丝分裂。 该模型与裂变酵母中的实验并驾齐驱。该项目超越了以前的工作,以解决封闭的有丝分裂,其中核包膜保持不变,并且染色体隔离和核划分共同出现。为了了解整个封闭有丝分裂,该项目正在识别纺锤体影响包膜的机制,并且包膜影响成功有丝分裂的主轴。在有丝分裂中建立这种更现实的核分裂和染色体分离的模型最终将允许研究跨越生命的有丝分裂,尤其是在核隐络功能方面(封闭,半开放和开放有丝分裂)。从长远来看,了解细胞分裂在有助于纠正细胞分裂中的误差的长期以来很重要。该项目正在开发生物物理学,细胞生物学和数学生物学方面的跨学科教育。该项目正在扩展一项国际,在线生物物理学研讨会,该研讨会使研究结果在精英机构外部广泛可用,并且无需付出任何代价,从而扩大了对生物物理学的参与。该项目通过将膜和细胞骨架建模工具汇总在一起,对封闭有丝裂作用进行建模,这些工具与易于易质算法的挑战和实现。 第一个目标是将有丝分裂模型扩展到包括可变形的弹性核包膜,以将纺锤体和染色体与核包膜的边界综合和三角形膜模型相结合。第二个目标是通过建模和测量包膜形状,纺锤体动力学和染色体运动,在细胞中对核包膜扰动进行建模和测量,核包膜力和变形如何驱动封闭有丝分裂的成功染色体分离。 该项目正在开发新的算法和软件,以模拟膜 - 细胞骨架相互作用,这些相互作用很难建模。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的影响来通过评估来支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Meredith Betterton其他文献
Action at a distance along the microtubule couples kinesin motors
- DOI:
10.1016/j.bpj.2022.11.2375 - 发表时间:
2023-02-10 - 期刊:
- 影响因子:
- 作者:
Sithara Wijeratne;Shane A. Fiorenza;Alex Neary;Radhika Subramanian;Meredith Betterton - 通讯作者:
Meredith Betterton
Synthetic Mimics of the Nuclear Pore Complex
- DOI:
10.1016/j.bpj.2017.11.3407 - 发表时间:
2018-02-02 - 期刊:
- 影响因子:
- 作者:
Laura Maguire;Michael Stefferson;Katherine Rainey;Nathan Crossette;Eric Verbeke;Meredith Betterton;Loren Hough - 通讯作者:
Loren Hough
Meredith Betterton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Meredith Betterton', 18)}}的其他基金
Collaborative Research: DMS/NIGMS 1: Mesoscale Kinetic Theory of Early Mitotic Spindle Organization
合作研究:DMS/NIGMS 1:早期有丝分裂纺锤体组织的中尺度动力学理论
- 批准号:
2153399 - 财政年份:2022
- 资助金额:
$ 110.32万 - 项目类别:
Standard Grant
Collaborative Research: Robust and Scalable Methods for Simulation and Data-Driven Modeling of Particulate Flows
协作研究:用于颗粒流模拟和数据驱动建模的稳健且可扩展的方法
- 批准号:
1821305 - 财政年份:2018
- 资助金额:
$ 110.32万 - 项目类别:
Continuing Grant
Theory of dynamic cytoskeletal length regulation and stabilization
动态细胞骨架长度调节和稳定理论
- 批准号:
1725065 - 财政年份:2018
- 资助金额:
$ 110.32万 - 项目类别:
Continuing Grant
EAGER: Biophysical Theory of Mitotic Spindle Length Instability and Self Assembly
EAGER:有丝分裂纺锤体长度不稳定性和自组装的生物物理理论
- 批准号:
1551095 - 财政年份:2015
- 资助金额:
$ 110.32万 - 项目类别:
Standard Grant
Collaborative Research: Hydrodynamic Theories of the Dynamics, Fluctuations, Boundaries, and Shapes of Flocks
合作研究:群体动力学、波动、边界和形状的流体动力学理论
- 批准号:
1137822 - 财政年份:2011
- 资助金额:
$ 110.32万 - 项目类别:
Standard Grant
CAREER: Molecular Motors and Protein Motion: From Mechanisms to Collective Effects
职业:分子马达和蛋白质运动:从机制到集体效应
- 批准号:
0847685 - 财政年份:2009
- 资助金额:
$ 110.32万 - 项目类别:
Standard Grant
相似国自然基金
碳纤维/树脂复合材料模量匹配与梯度界面的协同效应及强韧化机制研究
- 批准号:52373080
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
基于丝素蛋白多孔凝胶的低模量柔性脑电极研究
- 批准号:62301555
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高模量高塑性(CNTs+AlN)/AZ91复合材料的制备及性能调控机理研究
- 批准号:52301198
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
考虑颗粒特征的粗粒土初始剪切模量宏细观分析及混合驱动模型研究
- 批准号:52309173
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高回弹高模量耐疲劳离子皮肤的结构和性能研究
- 批准号:22305033
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: MODULUS: Protein droplets drive membrane bending and cytoskeletal organization
合作研究:MODULUS:蛋白质液滴驱动膜弯曲和细胞骨架组织
- 批准号:
2327243 - 财政年份:2023
- 资助金额:
$ 110.32万 - 项目类别:
Continuing Grant
Collaborative Research: MODULUS: Protein droplets drive membrane bending and cytoskeletal organization
合作研究:MODULUS:蛋白质液滴驱动膜弯曲和细胞骨架组织
- 批准号:
2327244 - 财政年份:2023
- 资助金额:
$ 110.32万 - 项目类别:
Standard Grant
Collaborative Research: NSF Workshop on Models for Uncovering Rules and Unexpected Phenomena in Biological Systems (MODULUS)
合作研究:NSF 揭示生物系统规则和意外现象模型研讨会 (MODULUS)
- 批准号:
2232740 - 财政年份:2022
- 资助金额:
$ 110.32万 - 项目类别:
Standard Grant
Collaborative Research: NSF Workshop on Models for Uncovering Rules and Unexpected Phenomena in Biological Systems (MODULUS)
合作研究:NSF 揭示生物系统规则和意外现象模型研讨会 (MODULUS)
- 批准号:
2232741 - 财政年份:2022
- 资助金额:
$ 110.32万 - 项目类别:
Standard Grant
Collaborative Research: MODULUS: Copy Number Alterations and Xenobiotic adaptation
合作研究:MODULUS:拷贝数改变和异生素适应
- 批准号:
2141650 - 财政年份:2022
- 资助金额:
$ 110.32万 - 项目类别:
Standard Grant