Theory of dynamic cytoskeletal length regulation and stabilization

动态细胞骨架长度调节和稳定理论

基本信息

  • 批准号:
    1725065
  • 负责人:
  • 金额:
    $ 34.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-06-15 至 2022-05-31
  • 项目状态:
    已结题

项目摘要

NONTECHNICAL SUMMARYThis award supports theoretical and computational research, and education on the fundamental mechanisms that determine size of living organisms and biomaterials. When biological organisms grow, they regulate the size that they reach: for example, people grow to their adult height and then remain that tall. Therefore, sensing and regulating size is an essential physics problem that biological organisms solve. Living systems control the size not just of whole organisms, but also of smaller internal structures (organs, cells, and structures inside cells). The physical principles and mechanisms underlying the sensing and control of size in biology are not well understood. This project will develop new physics-based models to understand and predict how length of one class of subcellular structures are regulated in organisms. Related mechanisms may be useful in regulating the growth of polymers and biomaterials. This project will develop interdisciplinary research and education, and work to improve diversity in science.TECHNICAL SUMMARYThis award supports theoretical and computational research, and education on the fundamental mechanisms that determine size of living organisms and biomimetic biomaterials. Regulating physical size is an essential problem that biological organisms must solve, but the physical principles and mechanisms underlying the sensing and control of size in biology are not well understood. The regulation of polymer length is important for the organization of the cellular cytoskeleton, which affects the size of subcellular organelles such as the mitotic spindle and the structure of cells themselves. An important general question is how to use molecular-level information to understand and predict higher-order aspects of assembly and organization. Remarkably, many cytoskeletal assemblies can maintain a constant, self-organized length, even though they are nonequilibrium structures with constant molecular turnover. While significant previous work has focused on steady-state spindle length, the PI aims to advance understanding of dynamic spindle length regulation. Results from this work will provide a basis for developing predictive understanding of dynamic length regulation and cytoskeletal self-assembly. The work is built on theoretical and modeling tools, including tractable analytic models, semi-analytic and numerical analysis, simplified simulation models, and detailed three-dimensional simulations. This project will address how length regulation and its dynamic stabilization can emerge as a collective property as the level of cytoskeletal assembly changes from single filaments, filament bundles, and the mitotic spindle. The work will focus on two scientific questions. First, what are the general mechanisms of length sensing of single cytoskeletal filaments, bundles, and higher-order assemblies? While previous length-sensing work has assumed monotonically length-dependent processes, this work will conduct a wide-ranging theoretical investigation into classes of length sensing, inspired by currently known biological processes. Second, what types of feedback and amplification lead to dynamically stable or unstable length regulation? Recent work demonstrates that mitotic spindle length is dynamically stabilized at a steady state value, and that this stabilization can be perturbed, causing large length fluctuations. The work will perform a general investigation of classes of feedback and amplification that lead to dynamically stable or unstable length of cytoskeletal assemblies. Mechanisms explored in the research may be applicable to regulating the growth of polymers and biomaterials.The work will provide insight into biologically relevant general mechanisms of length sensing and regulation, by determining how bundling, spatially non-monotonic activity, and force-dependent regulation can effect length sensing. The work will develop understanding of the dynamic stabilization, and investigate whether there are different characteristic modes of dynamic destabilization. Research advances may have applicability to growth of biomaterials and soft materials more generally. This project will also test mechanical contributions to spindle length stabilization, by considering how spindle components contribute forces and feedback that enable constant, stable spindle length. This will improve understanding of collective self-assembly in cells. The project is an integrated interdisciplinary program of theoretical biophysics and statistical mechanics informed by cell biology and genetics to gain insight into cytoskeletal length regulation and stabilization. The PI works to increase gender and racial diversity in science through multiple activities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要这一奖项支持理论和计算研究,以及关于决定生物体和生物材料大小的基本机制的教育。当生物生物生长时,它们会调节所达到的大小:例如,人们长到成人身高,然后保持高高。因此,传感和调节大小是生物生物解决的基本物理问题。生活系统不仅控制整个生物的大小,还控制着较小的内部结构(器官,细胞和细胞内部结构)的尺寸。对生物学中大小的传感和控制的背后的物理原理和机制尚不清楚。该项目将开发新的基于物理的模型,以了解和预测生物体中一类细胞结构的长度。相关机制可能有助于调节聚合物和生物材料的生长。 该项目将开发跨学科的研究和教育,并致力于改善科学的多样性。技术摘要奖支持理论和计算研究,以及关于决定生物体规模和仿生生物材料尺寸的基本机制的教育。调节物理大小是生物生物必须解决的一个重要问题,但是对生物学中大小的感测和控制的物理原理和机制尚不清楚。聚合物长度的调节对于细胞细胞骨架的组织至关重要,该细胞细胞骨架会影响细胞细胞器的大小,例如有丝分裂主轴和细胞本身的结构。一个重要的一般问题是如何使用分子级信息来理解和预测组装和组织的高阶方面。值得注意的是,即使它们是具有恒定分子周转率的非平衡结构,许多细胞骨架组件也可以保持恒定的自组织长度。尽管以前的重要工作集中在稳态纺锤体上,但PI旨在提高对动态纺锤长度调节的理解。这项工作的结果将为对动态长度调节和细胞骨架自组装的预测理解提供基础。这项工作建立在理论和建模工具上,包括可拖动的分析模型,半分析和数值分析,简化的仿真模型以及详细的三维模拟。该项目将解决长度调节及其动态稳定如何作为集体特性出现,因为细胞骨架组件的水平会随着单细丝,细丝束和有丝分裂的纺锤体的变化而变化。这项工作将集中在两个科学问题上。首先,单细胞骨骼丝,束和高阶组件的长度感测的一般机制是什么?尽管以前的长度感应工作已经采用了单调的长度依赖性过程,但该工作将对长度传感类别进行广泛的理论研究,这是受当前已知的生物学过程的启发。其次,哪种类型的反馈和扩增会导致长度调节的动态稳定或不稳定的调节?最近的工作表明,有丝分裂的纺锤体长度在稳态值下动态稳定,并且这种稳定性可能会受到干扰,从而导致大长度波动。这项工作将对反馈类别和扩增的类别进行一般研究,这会导致动态稳定或不稳定的细胞骨架组件长度。研究中探索的机制可能适用于调节聚合物和生物材料的生长。该工作将通过确定如何通过确定捆绑,空间非单调活性和力依赖性调节来洞悉长度传感和调节的生物学相关的一般机制,从而提供洞察力。这项工作将发展对动态稳定的理解,并研究动态不稳定的特征模式是否不同。研究进展可能更普遍地适用于生物材料和软材料的生长。该项目还将通过考虑主轴组件如何贡献力和反馈来实现恒定稳定的纺锤体长度来测试主轴长度稳定的机械贡献。这将提高对细胞中集体自组装的理解。该项目是一个由细胞生物学和遗传学告知的理论生物物理学和统计力学的综合跨学科计划,可深入了解细胞骨架长度的调节和稳定。 PI致力于通过多种活动来提高科学中的性别和种族多样性。该奖项反映了NSF的法定使命,并且使用基金会的知识分子优点和更广泛的影响审查标准,被认为值得通过评估来支持。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Collective motion of driven semiflexible filaments tuned by soft repulsion and stiffness
  • DOI:
    10.1039/d0sm01036g
  • 发表时间:
    2020-11-07
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Moore, Jeffrey M.;Thompson, Tyler N.;Betterton, Meredith D.
  • 通讯作者:
    Betterton, Meredith D.
Theory of Cytoskeletal Reorganization during Cross-Linker-Mediated Mitotic Spindle Assembly
  • DOI:
    10.1016/j.bpj.2019.03.013
  • 发表时间:
    2019-05-07
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Lamson, Adam R.;Edelmaier, Christopher J.;Betterton, Meredith D.
  • 通讯作者:
    Betterton, Meredith D.
Toward Task Capable Active Matter: Learning to Avoid Clogging in Confined Collectives via Collisions
迈向具有任务能力的活性物质:学习避免通过碰撞在有限的集体中发生堵塞
  • DOI:
    10.3389/fphy.2022.735667
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Aina, Kehinde O.;Avinery, Ram;Kuan, Hui-Shun;Betterton, Meredith D.;Goodisman, Michael A.;Goldman, Daniel I.
  • 通讯作者:
    Goldman, Daniel I.
Chiral self-sorting of active semiflexible filaments with intrinsic curvature
具有固有曲率的活性半柔性细丝的手性自排序
  • DOI:
    10.1039/d0sm01163k
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Moore, Jeffrey M.;Glaser, Matthew A.;Betterton, Meredith D.
  • 通讯作者:
    Betterton, Meredith D.
Bound-State Diffusion due to Binding to Flexible Polymers in a Selective Biofilter
  • DOI:
    10.1016/j.bpj.2019.11.026
  • 发表时间:
    2020-01-21
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Maguire, Laura;Betterton, Meredith D.;Hough, Loren E.
  • 通讯作者:
    Hough, Loren E.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Meredith Betterton其他文献

Action at a distance along the microtubule couples kinesin motors
  • DOI:
    10.1016/j.bpj.2022.11.2375
  • 发表时间:
    2023-02-10
  • 期刊:
  • 影响因子:
  • 作者:
    Sithara Wijeratne;Shane A. Fiorenza;Alex Neary;Radhika Subramanian;Meredith Betterton
  • 通讯作者:
    Meredith Betterton
Synthetic Mimics of the Nuclear Pore Complex
  • DOI:
    10.1016/j.bpj.2017.11.3407
  • 发表时间:
    2018-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Laura Maguire;Michael Stefferson;Katherine Rainey;Nathan Crossette;Eric Verbeke;Meredith Betterton;Loren Hough
  • 通讯作者:
    Loren Hough

Meredith Betterton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Meredith Betterton', 18)}}的其他基金

Collaborative Research: MODULUS: Nuclear envelope shape change coordination with chromosome segregation in mitosis in fission yeast
合作研究:MODULUS:核膜形状变化与裂殖酵母有丝分裂中染色体分离的协调
  • 批准号:
    2133243
  • 财政年份:
    2022
  • 资助金额:
    $ 34.2万
  • 项目类别:
    Standard Grant
Collaborative Research: DMS/NIGMS 1: Mesoscale Kinetic Theory of Early Mitotic Spindle Organization
合作研究:DMS/NIGMS 1:早期有丝分裂纺锤体组织的中尺度动力学理论
  • 批准号:
    2153399
  • 财政年份:
    2022
  • 资助金额:
    $ 34.2万
  • 项目类别:
    Standard Grant
Collaborative Research: Robust and Scalable Methods for Simulation and Data-Driven Modeling of Particulate Flows
协作研究:用于颗粒流模拟和数据驱动建模的稳健且可扩展的方法
  • 批准号:
    1821305
  • 财政年份:
    2018
  • 资助金额:
    $ 34.2万
  • 项目类别:
    Continuing Grant
EAGER: Biophysical Theory of Mitotic Spindle Length Instability and Self Assembly
EAGER:有丝分裂纺锤体长度不稳定性和自组装的生物物理理论
  • 批准号:
    1551095
  • 财政年份:
    2015
  • 资助金额:
    $ 34.2万
  • 项目类别:
    Standard Grant
Collaborative Research: Hydrodynamic Theories of the Dynamics, Fluctuations, Boundaries, and Shapes of Flocks
合作研究:群体动力学、波动、边界和形状的流体动力学理论
  • 批准号:
    1137822
  • 财政年份:
    2011
  • 资助金额:
    $ 34.2万
  • 项目类别:
    Standard Grant
CAREER: Molecular Motors and Protein Motion: From Mechanisms to Collective Effects
职业:分子马达和蛋白质运动:从机制到集体效应
  • 批准号:
    0847685
  • 财政年份:
    2009
  • 资助金额:
    $ 34.2万
  • 项目类别:
    Standard Grant

相似国自然基金

钙信号介导的细胞骨架动态组装调控破骨细胞功能的机制研究
  • 批准号:
    82301042
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
HIV调控巨噬细胞骨架动态性介导隐球菌脑膜炎形成的分子机制研究
  • 批准号:
    82202547
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
HIV调控巨噬细胞骨架动态性介导隐球菌脑膜炎形成的分子机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
内质网形态结构动态变化的分子机制及其在细胞凋亡过程中的功能
  • 批准号:
    31871353
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
Kinesin-12/Myosin-IIB复合物调节神经元生长锥骨架动态重构的功能与机制研究
  • 批准号:
    31701049
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Elucidating the spatiotemporal regulation of septal peptidoglycan synthases in E.coli
阐明大肠杆菌中隔膜肽聚糖合酶的时空调节
  • 批准号:
    10680050
  • 财政年份:
    2023
  • 资助金额:
    $ 34.2万
  • 项目类别:
Dynamic interactions among olfactory sensory neuron axons
嗅觉感觉神经元轴突之间的动态相互作用
  • 批准号:
    10224737
  • 财政年份:
    2019
  • 资助金额:
    $ 34.2万
  • 项目类别:
Dynamic interactions among olfactory sensory neuron axons
嗅觉感觉神经元轴突之间的动态相互作用
  • 批准号:
    10685631
  • 财政年份:
    2019
  • 资助金额:
    $ 34.2万
  • 项目类别:
Functional Involvement of IntegrinB4/ITGB4 and Kindlin/FERMT2 in Focal Adhesion Dynamic Remodeling in ARDS
IntegrinB4/ITGB4 和 Kindlin/FERMT2 在 ARDS 粘着动态重塑中的功能参与
  • 批准号:
    10871783
  • 财政年份:
    2016
  • 资助金额:
    $ 34.2万
  • 项目类别:
Mechanical Regulation of Cell Adhesion by Dynamic Cytoskeletal Assemblies
动态细胞骨架组件对细胞粘附的机械调节
  • 批准号:
    10533356
  • 财政年份:
    2015
  • 资助金额:
    $ 34.2万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了