Collaborative Research: FET: Medium: Robust Quantum Networks via Efficient Entanglement Distribution

合作研究:FET:介质:通过高效纠缠分布实现稳健的量子网络

基本信息

  • 批准号:
    2106448
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Quantum Computing has the potential, if realized, to significantly alter the computing landscape. However, building large-scale quantum computers is a key challenge. Quantum Networks (QNs) enable the construction of large, robust, and more capable quantum-computing platforms by connecting smaller quantum computers. Networked quantum systems have the potential to significantly alter various activities in society by leading to faster development in medicine and engineering; more secure and privacy-preserving communication; and hitherto infeasible optimizations that leverage the immense computational power to identify efficiencies in manufacturing, logistics, finance, etc. This project is also using the potential and attractiveness of QNs to design and offer a variety of educational programs, including a flexible post-baccalaureate program in quantum computing and networking to cater to non-traditional students, improve the diversity of undergraduate and graduate student body, and develop a quantum capable workforce.Building QNs that support robust communication across nodes requires several fundamental scientific and technological advances, especially since classical techniques cannot be directly used in the quantum regime. QNs can be used to build quantum computing systems that are more capable and more resilient than stand-alone quantum computers. This project is examining the design and implementation of QNs from the ground up by developing an infrastructure for efficient communication and management of quantum entanglements in the network. In addition, the project is addressing specific challenges in two key applications of QNs: (i) Distributed quantum algorithms, and (ii) Quantum sensor networks. The project is evaluating the developed techniques using large-scale simulations and over a 6-node QN testbed spread across Long Island, NY. The testbed is providing a high-fidelity platform to evaluate the effectiveness of our developed techniques. Overall, the project has three research thrusts.In the first thrust, the project is developing an infrastructure to facilitate efficient communication and entanglement management. In particular, it is developing optimization techniques for (i) efficient generation of long-distance entanglement using multiple paths, and (ii) efficient distribution of pre-distributed entanglements. In addition, the project is developing efficient entanglement-distillation strategies in practical settings, and protocols for multicast primitives. In the second thrust, the project is addressing challenges in the context of two key QN applications to corroborate and validate the developed techniques. In particular, the project is developing optimization techniques for efficient distributed implementation of centralized quantum circuits; efficient distributed implementations are important for QN’s computational success. In the context of quantum sensor networks, it is designing efficient protocols for the estimation of binary parameter functions and investigating the benefit of entanglements in these settings. In the third thrust, the project is evaluating the above techniques using large-scale simulations and a small QN testbed. To evaluate QN performance effectively, the project is formulating novel performance metrics for QNs; this requires non-trivial generalization of the classical network metrics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子计算一旦实现,有可能显着改变计算格局。然而,构建大规模量子计算机是一个关键挑战,它可以通过构建大型、强大且功能更强大的量子计算平台。连接更小的量子计算机有可能通过促进医学和工程的更快发展来显着改变社会的各种活动;制造、物流、金融等方面的效率。该项目还利用量子网络的潜力和吸引力来设计和提供各种教育项目,包括灵活的量子计算和网络学士学位后项目,以满足非传统学生的需求提高本科生和研究生群体的多样性,并培养一支具有量子能力的劳动力队伍。构建支持跨节点稳健通信的 QN 需要多项基础科学和技术进步,特别是因为经典技术无法直接在量子体系中使用。用过的该项目正在通过开发用于网络中量子纠缠的通信和管理的基础设施来构建比独立高效量子计算机更强大、更有弹性的量子计算系统。此外,该项目正在解决 QN 的两个关键应用中的具体挑战:(i) 分布式量子算法,以及 (ii) 量子传感器网络。该项目正在使用大规模模拟和 6 节点 QN 测试台来评估已开发的技术。遍布纽约长岛。该测试平台提供了一个高保真平台来评估我们开发的技术的有效性。总的来说,该项目有三个研究重点。第一个重点是开发一个基础设施,以促进高效的通信和纠缠管理。特别是,它正在开发优化技术,用于(i)使用多路径生成长距离纠缠,以及(ii)预分布纠缠的有效分布。此外,该项目还在实际环境中有效地开发纠缠蒸馏策略。在第二个重点中,该项目正在解决两个关键 QN 应用环境中的挑战,以证实和验证所开发的技术,特别是,该项目正在开发用于集中式量子电路的高效分布式实现的优化技术。在量子传感器网络的背景下,高效的分布式实现对于 QN 的计算成功非常重要,它正在设计用于估计二元参数函数的有效协议,并研究这些设置中纠缠的好处。上述技术使用为了有效评估 QN 性能,该项目正在为 QN 制定新颖的性能指标;这需要对经典网络指标进行非平凡的概括。该奖项反映了 NSF 的法定使命,并被认为是值得的。通过使用基金会的智力优势和更广泛的影响审查标准进行评估来提供支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Iman Marvian其他文献

Hilbert-Space Ergodicity in Driven Quantum Systems: Obstructions and Designs
驱动量子系统中的希尔伯特空间遍历性:障碍和设计
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Pilatowsky;Iman Marvian;Soonwon Choi;Wen Wei Ho
  • 通讯作者:
    Wen Wei Ho
Synthesis of Energy-Conserving Quantum Circuits with XY interaction
XY 相互作用节能量子电路的合成
  • DOI:
    10.1088/2058-9565/ad53fa
  • 发表时间:
    2023-09-20
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Iman Marvian;Ge Bai
  • 通讯作者:
    Ge Bai

Iman Marvian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Iman Marvian', 18)}}的其他基金

CAREER: Applications of Quantum Information Theory and Symmetry Principles in Quantum Physics
职业:量子信息论和对称原理在量子物理中的应用
  • 批准号:
    2046195
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant

相似国自然基金

离子辐照精准调控SnS2栅极敏感材料缺陷密度增强碳基FET型气体传感器性能的研究
  • 批准号:
    12305330
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
二维铁电MOS场效应管的存算逻辑建模及其代数系统研究
  • 批准号:
    62304115
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于离子敏感场效应管和微纳孔道的三维电荷传感系统研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
半导体敏化栅极场效应管室温氢气传感器性能与机理研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
GaN基芯片场效应管异质结亚十纳米空间热输运机理研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
  • 批准号:
    2329908
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Small: Reservoir Computing with Ion-Channel-Based Memristors
合作研究:FET:小型:基于离子通道忆阻器的储层计算
  • 批准号:
    2403560
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
  • 批准号:
    2329909
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Small: Reservoir Computing with Ion-Channel-Based Memristors
合作研究:FET:小型:基于离子通道忆阻器的储层计算
  • 批准号:
    2403559
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Medium: Design and Implementation of Quantum Databases
合作研究:FET:媒介:量子数据库的设计和实现
  • 批准号:
    2312754
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了