CAREER: Applications of Quantum Information Theory and Symmetry Principles in Quantum Physics

职业:量子信息论和对称原理在量子物理中的应用

基本信息

  • 批准号:
    2046195
  • 负责人:
  • 金额:
    $ 50.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Over the last few decades, researchers in Quantum Information Science (QIS) have discovered that quantum properties of nature, such as entanglement and quantum coherence, can be used to enhance the power of computers, sensors, and other information-processing devices. The rapid progress of QIS has also had profound impacts on the rest of physics. From high-energy physics to condensed matter theory, ideas, techniques, and conceptual frameworks developed in this field have had revolutionary effects. In this project, the Principal Investigator will address a series of related QIS questions of critical importance to both theoretical physics and quantum computing. Broadly speaking, this project aims to investigate the behavior and properties of composite quantum-mechanical systems in the presence of symmetries and conservation laws. Besides applications in QIS, the project also explores the implications of this study in other areas of Physics. Specifically, the project investigates how quantum phenomena can enhance or affect the performance of thermal machines. This project also provides educational opportunities for a range of students in physics, engineering, and other computational sciences. The project consists of two main parts: The first part fully investigates the properties and applications of Local Symmetric Quantum Circuits (LSQC) and, specifically, random LSQC. The problem of characterizing LSQC is equivalent to determining the general features of the unitary time evolutions generated by local symmetric Hamiltonians. This is useful, e.g., for understanding chaos and thermalization of many-body systems with conserved charges. Although certain aspects of LSQC have been previously studied in the context of quantum chaos and Symmetry-Protected Topological (SPT) order, a broad and precise understanding of the properties of this family of circuits is still missing. A preliminary study has revealed unexpected features and the rich mathematical structure of this framework. The anticipated results have applications and implications in areas such as quantum control, quantum thermodynamics, SPT order, and quantum gravity. The second part of this project investigates quantum thermodynamics from the point of view of quantum information theory, and more specifically, the resource-theoretic approach to thermodynamics, which has been flourishing in the last ten years. The project aims to address some important shortcomings of the existing framework, namely to develop a unified theory of work and coherence distillation in the resource-theoretic framework of quantum thermodynamics, as well as experimental proposals for probing genuine quantum features of this theory.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去的几十年里,量子信息科学(QIS)的研究人员发现,自然界的量子特性,例如纠缠和量子相干性,可以用来增强计算机、传感器和其他信息处理设备的能力。 QIS 的快速进展也对物理学的其他领域产生了深远的影响。从高能物理到凝聚态理论,该领域发展的思想、技术和概念框架产生了革命性的影响。在这个项目中,首席研究员将解决一系列对理论物理和量子计算至关重要的相关 QIS 问题。 从广义上讲,该项目旨在研究复合量子力学系统在对称性和守恒定律存在的情况下的行为和性质。 除了在 QIS 中的应用之外,该项目还探讨了这项研究在物理学其他领域的影响。 具体来说,该项目研究量子现象如何增强或影响热机的性能。 该项目还为物理、工程和其他计算科学领域的一系列学生提供教育机会。 该项目由两个主要部分组成:第一部分全面研究局域对称量子电路(LSQC)的特性和应用,特别是随机 LSQC。表征LSQC的问题相当于确定由局部对称哈密顿量生成的酉时间演化的一般特征。这对于理解具有守恒电荷的多体系统的混沌和热化等很有用。尽管之前已经在量子混沌和对称保护拓扑 (SPT) 顺序的背景下研究了 LSQC 的某些方面,但仍然缺乏对该系列电路特性的广泛而精确的理解。初步研究揭示了该框架的意想不到的特征和丰富的数学结构。预期结果在量子控制、量子热力学、SPT 阶和量子引力等领域具有应用和意义。 该项目的第二部分从量子信息论的角度研究量子热力学,更具体地说,从过去十年蓬勃发展的热力学资源理论方法研究量子热力学。该项目旨在解决现有框架的一些重要缺陷,即在量子热力学资源理论框架中发展统一的功理论和相干蒸馏理论,以及探索该理论真正量子特征的实验建议。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Restrictions on realizable unitary operations imposed by symmetry and locality
对称性和局部性对可实现的酉运算的限制
  • DOI:
    10.1038/s41567-021-01464-0
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    19.6
  • 作者:
    Marvian; Iman
  • 通讯作者:
    Iman
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Iman Marvian其他文献

Synthesis of Energy-Conserving Quantum Circuits with XY interaction
XY 相互作用节能量子电路的合成
  • DOI:
    10.1088/2058-9565/ad53fa
  • 发表时间:
    2023-09-20
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Iman Marvian;Ge Bai
  • 通讯作者:
    Ge Bai
Hilbert-Space Ergodicity in Driven Quantum Systems: Obstructions and Designs
驱动量子系统中的希尔伯特空间遍历性:障碍和设计
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Pilatowsky;Iman Marvian;Soonwon Choi;Wen Wei Ho
  • 通讯作者:
    Wen Wei Ho

Iman Marvian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Iman Marvian', 18)}}的其他基金

Collaborative Research: FET: Medium: Robust Quantum Networks via Efficient Entanglement Distribution
合作研究:FET:介质:通过高效纠缠分布实现稳健的量子网络
  • 批准号:
    2106448
  • 财政年份:
    2021
  • 资助金额:
    $ 50.91万
  • 项目类别:
    Continuing Grant

相似国自然基金

英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目
基于多源时空大数据驱动的广海域船联网数据传输算法研究
  • 批准号:
    61902367
  • 批准年份:
    2019
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目
基于时空数据的多平台用户连接关键技术研究
  • 批准号:
    61902270
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
超空间众包数据管理关键技术
  • 批准号:
    61902023
  • 批准年份:
    2019
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目
空间约束的在线包组推荐优化与公平性研究
  • 批准号:
    61862013
  • 批准年份:
    2018
  • 资助金额:
    37.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

CAREER: Active Nonlinear Photonics with Applications in Quantum Networks
职业:有源非线性光子学在量子网络中的应用
  • 批准号:
    2410198
  • 财政年份:
    2023
  • 资助金额:
    $ 50.91万
  • 项目类别:
    Continuing Grant
CAREER: Photonic Quantum Machine Learning: From Architecture to Applications
职业:光子量子机器学习:从架构到应用
  • 批准号:
    2144057
  • 财政年份:
    2022
  • 资助金额:
    $ 50.91万
  • 项目类别:
    Continuing Grant
CAREER: Active Nonlinear Photonics with Applications in Quantum Networks
职业:有源非线性光子学在量子网络中的应用
  • 批准号:
    2144356
  • 财政年份:
    2022
  • 资助金额:
    $ 50.91万
  • 项目类别:
    Continuing Grant
CAREER: Quantum many-body physics beyond the Boltzmann paradigm: prethermalization, many-body localization, and their applications
职业:超越玻尔兹曼范式的量子多体物理:预热、多体局域化及其应用
  • 批准号:
    2236517
  • 财政年份:
    2022
  • 资助金额:
    $ 50.91万
  • 项目类别:
    Continuing Grant
CAREER: Photonic Quantum Machine Learning: From Architecture to Applications
职业:光子量子机器学习:从架构到应用
  • 批准号:
    2317471
  • 财政年份:
    2022
  • 资助金额:
    $ 50.91万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了