Collaborative Research: CIF: Small: Low-Complexity Algorithms for Unsourced Multiple Access and Compressed Sensing in Large Dimensions

合作研究:CIF:小型:大维度无源多址和压缩感知的低复杂度算法

基本信息

  • 批准号:
    2131115
  • 负责人:
  • 金额:
    $ 17.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

Wireless traffic is increasingly heterogeneous, with growth coming primarily from unattended devices. While early implementations of wireless communication systems have focused on voice telephony, subsequent generations of cellular infrastructures have enabled users to connect more broadly with the Internet, in support of applications such as gaming, browsing, and video watching. Looking into the future, unattended devices are predicted to grow rapidly and to generate a significant portion of the wireless data traffic. This evolution represents a formidable challenge for current infrastructures because such devices interact with the Internet in fundamentally different ways than humans. Individuals tend to establish sustained connections through their phones or computers, whereas machines often sporadically transmit status updates or control decisions with very short payloads. Without a fundamental redesign of the medium access control layer, wireless infrastructures will be unable to efficiently carry machine-type traffic, thereby creating a bottleneck for growth and innovation. The main goal of this research effort is to devise pragmatic random access schemes for machine-type data, with an eye towards addressing the aforementioned issues associated with the digital traffic of tomorrow. Findings from this project are expected to (i) help strengthen digital infrastructures, by now unanimously recognized as a key driver of the economy; (ii) train competent engineers with skills attuned to societal needs; and (iii) broaden participation in science, technology, engineering, and mathematics through recruiting and mentoring. Close connections will be exploited between multiple-access communication, compressed sensing, and sparse graph inference. The crucial challenges and main innovations arise from the exceedingly large dimensionality of the engineering problems considered, compared to the state-of-the-art. The envisioned structures and algorithms for performing at such scales are rooted in the divide-and-conquer approaches of stochastic binning and splitting data. Techniques from graph-based codes to modern iterative methods and interference management are expected to play important roles in pushing the boundaries of unsourced random access and inference in large dimensions. The fundamental limits of complexity-constrained algorithms in wireless communications will be characterized by leveraging recently developed tools from finite-block-length information theory, statistical physics, and applied probability. Key attributes of the proposed models include uncoordinated access and the ability to operate without explicitly acquiring device identities. This departure from established schemes is crucial for eliminating a reliance on individualized feedback, which has enabled fast connections in the past but would now become cost-prohibitive as a mechanism for machine-type traffic. Likely outcomes for this project include near-optimum, low-complexity schemes for the next-generation of random access wireless systems, which will be broadly applicable to deal with inference in exceedingly large dimensions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
无线流量越来越异质,主要来自无人看管的设备。尽管无线通信系统的早期实现集中在语音电话上,但随后的几代蜂窝基础架构使用户能够更广泛地与Internet建立联系,以支持游戏,浏览和视频观看等应用程序。展望未来,预计无人看管的设备将迅速增长,并产生大部分无线数据流量。这种进化代表了当前基础设施的巨大挑战,因为这种设备的方式与人类根本不同。个人倾向于通过手机或计算机建立持续的连接,而机器通常会以非常短的有效载荷来零星传输状态更新或控制决策。如果没有中等访问控制层的基本重新设计,无线基础架构将无法有效地携带机器型流量,从而为增长和创新创造瓶颈。这项研究工作的主要目的是为机器类型数据设计务实的随机访问方案,并着眼于解决与明天数字流量相关的上述问题。预计该项目的发现将(i)有助于加强数字基础设施,到目前为止,一致被认为是经济的主要驱动力; (ii)培训有能力满足社会需求的技能的有能力的工程师; (iii)通过招聘和指导扩大参与科学,技术,工程和数学。在多访问通信,压缩传感和稀疏图推理之间将利用关闭的连接。与最先进的工程问题相比,所考虑的工程问题的极大维度引起了至关重要的挑战和主要创新。在此类尺度上执行的设想结构和算法植根于随机嵌入和拆分数据的分裂和争议方法。从基于图的代码到现代迭代方法的技术和干扰管理将在突破不包含的随机访问和推理的界限中起重要作用。无线通信中复杂性约束算法的基本限制将以利用有限块长度信息理论,统计物理学和应用概率的最近开发的工具的特征。所提出的模型的关键属性包括不协调的访问和在不明确获取设备身份的情况下操作的能力。与已建立的计划的偏离对于消除对个性化反馈的依赖至关重要,这在过去已经实现了快速连接,但现在将成为机器型流量的机制。该项目的可能结果包括接近最省的低复杂性方案,用于下一代随机访问无线系统,这将非常适用于在极大的方面进行推断。该奖项反映了NSF的法定任务,并通过使用该基金会的知识分子优点和广泛的影响来评估NSF的法定任务,并被认为是值得的支持。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Data-Driven Blind Synchronization and Interference Rejection for Digital Communication Signals
  • DOI:
    10.1109/globecom48099.2022.10001513
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Lancho;A. Weiss;Gary C. F. Lee;Jennifer Tang;Yuheng Bu;Yury Polyanskiy;G. Wornell
  • 通讯作者:
    A. Lancho;A. Weiss;Gary C. F. Lee;Jennifer Tang;Yuheng Bu;Yury Polyanskiy;G. Wornell
On the Advantages of Asynchrony in the Unsourced MAC
论异步在无源MAC中的优点
  • DOI:
    10.1109/isit54713.2023.10206586
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fengler, Alexander;Lancho, Alejandro;Narayanan, Krishna;Polyanskiy, Yury
  • 通讯作者:
    Polyanskiy, Yury
Capacity of Noisy Permutation Channels
噪声排列通道的容量
Empirical Bayes via ERM and Rademacher complexities: the Poisson model
  • DOI:
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Soham Jana;Yury Polyanskiy;Anzo Teh;Yihong Wu
  • 通讯作者:
    Soham Jana;Yury Polyanskiy;Anzo Teh;Yihong Wu
Exploiting Temporal Structures of Cyclostationary Signals for Data-Driven Single-Channel Source Separation
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yury Polyanskiy其他文献

Short-packet communications with multiple antennas
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yury Polyanskiy
  • 通讯作者:
    Yury Polyanskiy
Sharp regret bounds for empirical Bayes and compound decision problems
经验贝叶斯和复合决策问题的尖锐遗憾界限
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yury Polyanskiy;Yihong Wu
  • 通讯作者:
    Yihong Wu
A New Estimator of Intrinsic Dimension
一种新的内在维数估计器
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Block;Zeyu Jia;Yury Polyanskiy;A. Rakhlin
  • 通讯作者:
    A. Rakhlin
Comparison of Channels: Criteria for Domination by a Symmetric Channel
渠道比较:对称渠道统治的标准
On locally decodable source coding
关于本地可解码的源代码

Yury Polyanskiy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yury Polyanskiy', 18)}}的其他基金

CIF: Small: Fundamental limits and coding for massive wireless random-access
CIF:小:大规模无线随机访问的基本限制和编码
  • 批准号:
    1717842
  • 财政年份:
    2017
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CAREER: Information Theory Beyond Capacity
职业:超越能力的信息论
  • 批准号:
    1253205
  • 财政年份:
    2013
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
CIF: Small: Collaborative Research: Combinatorial Joint Source-Channel Coding
CIF:小型:协作研究:组合联合源通道编码
  • 批准号:
    1318620
  • 财政年份:
    2013
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant

相似国自然基金

支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
  • 批准号:
    62371263
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
腙的Heck/脱氮气重排串联反应研究
  • 批准号:
    22301211
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
  • 批准号:
    52364038
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
  • 批准号:
    82371176
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
  • 批准号:
    82305286
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
  • 批准号:
    2403122
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402815
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343599
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343600
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research:CIF:Small:Acoustic-Optic Vision - Combining Ultrasonic Sonars with Visible Sensors for Robust Machine Perception
合作研究:CIF:Small:声光视觉 - 将超声波声纳与可见传感器相结合,实现强大的机器感知
  • 批准号:
    2326905
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了