Field-Theoretic Simulations: Coherent States and Particle-Field Linkages
场论模拟:相干态和粒子场联系
基本信息
- 批准号:2104255
- 负责人:
- 金额:$ 62.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
NONTECHNICAL SUMMARYThis award supports theory and computation, and education to advance computer simulation of polymeric materials which are based on polymers, long-chain-like molecules. Polymers are versatile materials that have remarkably broad applications in textiles, plastics and rubbers, paints and coatings, and consumer products including haircare products, cleansers, detergents, etc. They are also increasingly important in new energy harvesting technologies such as organic solar cells, as solid electrolytes in energy storage devices such as batteries, and in advanced drug delivery and medical devices. Perhaps surprisingly, the design of new polymers for such applications proceeds by trial-and-error experimentation until the molecular design yields the targeted properties and function.This project aims to advance in-silico computational design of polymeric materials. One component of the project will develop a new theoretical representation of polymers into a computational platform that will enable the design of materials with thermally reversible bonds. Such materials have unique properties such as self-repair when damaged, or responsiveness to thermal or chemical stimuli, both important in a variety of emerging applications. A second effort aims to link molecular simulations at the atomic scale with simulations that employ a different theoretical formulation and can reach scales of hundreds of micrometers. This capability will enable chemical details to be embedded in the theoretical models; the latter providing the link to polymer material properties. If successful, this multiple length scale modeling platform could dramatically accelerate the design of polymers for existing and new applications.Broader impacts of the proposed research include engagement by the project personnel in graduate, undergraduate, and post-doctoral training in theoretical and computational polymer science. Theoretically-oriented students will be exposed to broader soft materials disciplines through a close coupling with experimental groups at the University of California, Santa Barbara (UCSB) in chemical engineering, materials, and chemistry. Knowledge gained under the proposed project will be leveraged through the Complex Fluids Design Consortium at UCSB, an industry-national lab-academic partnership that is addressing the computational design of commercially relevant polymer formulations. All participants will contribute to the vibrant education and outreach programs of UCSB's Materials Research Science and Engineering Center.TECHNICAL SUMMARYThis award supports theory and computation, and education to advance theory and modeling of polymeric materials. This project will enhance the capabilities of the field-theoretic simulation (FTS) method, permitting numerical investigations of field theory models of polymers and soft materials without resorting to a mean-field approximation. One project component builds a new platform for FTS based on coherent-states polymer field theory, a long-neglected representation of interacting polymers inspired by quantum field theory. The proposed work aims to develop and optimize algorithms for simulations of coherent states models and apply those algorithms to fundamental studies of reversibly bonding, supramolecular polymers. Relationships will be explored between variables such as bonding equilibrium constants, stoichiometry and polymer architecture, and self-assembly behavior and thermodynamic properties. The unique structure of the coherent-states framework will enable a new force-matching scheme for systematic coarse-graining within FTS, applicable to both supramolecular and non-reactive polymer systems. Another component of the proposed research is to develop a workflow in which all-atom particle models are mapped to coarse-grained particle models using relative entropy minimization; the latter models of a form to allow analytical conversion to a fully-parameterized field theory. FTS can then be used to access mesoscale structure and thermodynamic properties directly connected to the underlying chemistry of the polymers. Broader impacts of the proposed research include engagement by the project personnel in graduate, undergraduate, and post-doctoral training in theoretical and computational polymer science. Theoretically-oriented students will be exposed to broader soft materials disciplines through a close coupling with experimental groups at the University of California, Santa Barbara (UCSB) in chemical engineering, materials, and chemistry. Knowledge gained under the proposed project will be leveraged through the Complex Fluids Design Consortium at UCSB, an industry-national lab-academic partnership that is addressing the computational design of commercially relevant polymer formulations. The all-atom to FTS workflow targeted by the project has the potential to revolutionize in silico design of such formulations. All participants will contribute to the vibrant education and outreach programs of UCSB's Materials Research Science and Engineering Center.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要该奖项支持理论和计算以及教育,以推进基于聚合物、长链分子的聚合物材料的计算机模拟。聚合物是一种多功能材料,在纺织品、塑料和橡胶、油漆和涂料以及护发产品、清洁剂、洗涤剂等消费品中有着非常广泛的应用。它们在有机太阳能电池等新能源收集技术中也越来越重要,电池等储能设备以及先进药物输送和医疗设备中的固体电解质。也许令人惊讶的是,用于此类应用的新聚合物的设计是通过反复试验进行的,直到分子设计产生目标特性和功能。该项目旨在推进聚合物材料的计算机计算设计。该项目的一个组成部分将在计算平台中开发聚合物的新理论表示,从而能够设计具有热可逆键的材料。此类材料具有独特的性能,例如损坏时的自我修复,或对热或化学刺激的响应能力,这在各种新兴应用中都很重要。第二项努力旨在将原子尺度的分子模拟与采用不同理论公式并且可以达到数百微米尺度的模拟联系起来。这种能力将使化学细节能够嵌入到理论模型中;后者提供了与聚合物材料特性的联系。如果成功,这种多长度建模平台可以极大地加速现有和新应用的聚合物设计。拟议研究的更广泛影响包括项目人员参与理论和计算聚合物科学的研究生、本科生和博士后培训。通过与加州大学圣塔芭芭拉分校 (UCSB) 化学工程、材料和化学实验小组的密切合作,以理论为导向的学生将接触到更广泛的软材料学科。在拟议项目中获得的知识将通过加州大学圣巴巴拉分校的复杂流体设计联盟加以利用,这是一个行业-国家实验室-学术合作伙伴关系,致力于解决商业相关聚合物配方的计算设计问题。所有参与者都将为加州大学圣巴巴拉分校材料研究科学与工程中心充满活力的教育和推广项目做出贡献。技术摘要该奖项支持理论和计算以及推进聚合物材料理论和建模的教育。该项目将增强场论模拟(FTS)方法的能力,允许对聚合物和软材料的场论模型进行数值研究,而无需诉诸平均场近似。项目的一个组成部分基于相干态聚合物场论构建了一个新的费托合成平台,相干态聚合物场论是一种受量子场论启发而长期被忽视的相互作用聚合物的表示。拟议的工作旨在开发和优化相干态模型模拟的算法,并将这些算法应用于可逆键合超分子聚合物的基础研究。将探索键合平衡常数、化学计量和聚合物结构、自组装行为和热力学性质等变量之间的关系。相干态框架的独特结构将为FTS内的系统粗粒度提供新的力匹配方案,适用于超分子和非反应性聚合物系统。拟议研究的另一个组成部分是开发一个工作流程,其中使用相对熵最小化将全原子粒子模型映射到粗粒度粒子模型;后者的模型允许解析转换为完全参数化的场论。然后,FTS 可用于获取与聚合物的基础化学直接相关的介观结构和热力学性质。拟议研究的更广泛影响包括项目人员参与理论和计算聚合物科学的研究生、本科生和博士后培训。通过与加州大学圣塔芭芭拉分校 (UCSB) 化学工程、材料和化学实验小组的密切合作,以理论为导向的学生将接触到更广泛的软材料学科。在拟议项目中获得的知识将通过加州大学圣巴巴拉分校的复杂流体设计联盟加以利用,这是一个行业-国家实验室-学术合作伙伴关系,致力于解决商业相关聚合物配方的计算设计问题。该项目目标的全原子到 FTS 工作流程有可能彻底改变此类配方的计算机设计。所有参与者都将为 UCSB 材料研究科学与工程中心充满活力的教育和推广项目做出贡献。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantitative Comparison of Field-Update Algorithms for Polymer SCFT and FTS
聚合物 SCFT 和 FTS 场更新算法的定量比较
- DOI:10.1021/acs.macromol.1c01804
- 发表时间:2021-10-28
- 期刊:
- 影响因子:5.5
- 作者:Daniel L. Vigil;K. Delaney;G. Fredrickson
- 通讯作者:G. Fredrickson
Modeling Microstructure Formation in Block Copolymer Membranes Using Dynamical Self-Consistent Field Theory
使用动态自洽场论模拟嵌段共聚物膜中的微结构形成
- DOI:10.1021/acsmacrolett.2c00611
- 发表时间:2023-01
- 期刊:
- 影响因子:7.015
- 作者:Grzetic, Douglas J.;Cooper, Anthony J.;Delaney, Kris T.;Fredrickson, Glenn H.
- 通讯作者:Fredrickson, Glenn H.
Predicting surfactant phase behavior with a molecularly informed field theory
用分子信息场理论预测表面活性剂相行为
- DOI:10.1016/j.jcis.2023.01.015
- 发表时间:2023-05
- 期刊:
- 影响因子:9.9
- 作者:Shen, Kevin;Nguyen, My;Sherck, Nicholas;Yoo, Brian;Köhler, Stephan;Speros, Joshua;Delaney, Kris T.;Shell, M. Scott;Fredrickson, Glenn H.
- 通讯作者:Fredrickson, Glenn H.
Self-consistent field theory study of polymer-mediated colloidal interactions in solution: Depletion effects and induced forces
溶液中聚合物介导的胶体相互作用的自洽场论研究:耗尽效应和诱导力
- DOI:10.1063/5.0065742
- 发表时间:2021-10
- 期刊:
- 影响因子:0
- 作者:Li, Wei;Delaney, Kris T.;Fredrickson, Glenn H.
- 通讯作者:Fredrickson, Glenn H.
Predicting Polyelectrolyte Coacervation from a Molecularly Informed Field-Theoretic Model
从分子信息场论模型预测聚电解质凝聚
- DOI:10.1021/acs.macromol.2c01759
- 发表时间:2022-11
- 期刊:
- 影响因子:5.5
- 作者:Nguyen, My;Sherck, Nicholas;Shen, Kevin;Edwards, Chelsea E.;Yoo, Brian;Köhler, Stephan;Speros, Joshua C.;Helgeson, Matthew E.;Delaney, Kris T.;Shell, M. Scott;et al
- 通讯作者:et al
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Glenn Fredrickson其他文献
Glenn Fredrickson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Glenn Fredrickson', 18)}}的其他基金
Field-Theoretic Simulations: Polarization Phenomena and Coherent States
场论模拟:偏振现象和相干态
- 批准号:
1822215 - 财政年份:2018
- 资助金额:
$ 62.47万 - 项目类别:
Standard Grant
DMREF: Collaborative Research: Computationally-Driven Design of Advanced Block Polymer Nanomaterials
DMREF:协作研究:先进嵌段聚合物纳米材料的计算驱动设计
- 批准号:
1725414 - 财政年份:2017
- 资助金额:
$ 62.47万 - 项目类别:
Standard Grant
Computational Polymer Field Theory: Revisiting the Sign Problem
计算聚合物场论:重新审视符号问题
- 批准号:
1506008 - 财政年份:2015
- 资助金额:
$ 62.47万 - 项目类别:
Continuing Grant
DMREF: Collaborative: Computationally Driven Discovery and Engineering of Multiblock Polymer Nanostructures Using Genetic Algorithms
DMREF:协作:使用遗传算法计算驱动的多嵌段聚合物纳米结构的发现和工程
- 批准号:
1332842 - 财政年份:2013
- 资助金额:
$ 62.47万 - 项目类别:
Standard Grant
Workshop on Opportunities in Theoretical and Computational Polymeric Materials and Soft Matter
理论和计算高分子材料和软物质机遇研讨会
- 批准号:
1344297 - 财政年份:2013
- 资助金额:
$ 62.47万 - 项目类别:
Standard Grant
Methods and Applications of Computational Polymer Field Theory
计算聚合物场论的方法与应用
- 批准号:
1160895 - 财政年份:2012
- 资助金额:
$ 62.47万 - 项目类别:
Continuing Grant
Field-Theoretic Polymer Simulations: Free Energy and Multi-Scale Methods
场论聚合物模拟:自由能和多尺度方法
- 批准号:
0904499 - 财政年份:2009
- 资助金额:
$ 62.47万 - 项目类别:
Continuing Grant
Field-Theoretic Polymer Simulations: Fundamentals and Applications
场论聚合物模拟:基础知识和应用
- 批准号:
0603710 - 财政年份:2006
- 资助金额:
$ 62.47万 - 项目类别:
Continuing Grant
NER: Computational Design of Nanostructured Complex Fluid Formulations: A Feasibility Study
NER:纳米结构复杂流体配方的计算设计:可行性研究
- 批准号:
0304596 - 财政年份:2003
- 资助金额:
$ 62.47万 - 项目类别:
Standard Grant
Theoretical Studies of Inhomogeneous Polymers
非均相聚合物的理论研究
- 批准号:
0312097 - 财政年份:2003
- 资助金额:
$ 62.47万 - 项目类别:
Continuing Grant
相似国自然基金
复杂激光等离子体环境下束间能量转移的理论模拟研究
- 批准号:12375239
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
电磁双曲超材料的数学理论与数值模拟
- 批准号:12301539
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
瓶刷型高分子体系玻璃化机理的理论和模拟研究
- 批准号:22373100
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
高分子链受限扩散和输运动力学的理论与模拟研究
- 批准号:22303100
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于混合变量的格点规范理论的量子模拟
- 批准号:12375013
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
CAREER: Chemically specific polymer models with field-theoretic simulations
职业:具有场论模拟的化学特定聚合物模型
- 批准号:
2337554 - 财政年份:2024
- 资助金额:
$ 62.47万 - 项目类别:
Continuing Grant
Field-Theoretic Simulations: Polarization Phenomena and Coherent States
场论模拟:偏振现象和相干态
- 批准号:
1822215 - 财政年份:2018
- 资助金额:
$ 62.47万 - 项目类别:
Standard Grant
Field-theoretic simulations with excluded volume correlations
排除体积相关性的场论模拟
- 批准号:
1410246 - 财政年份:2014
- 资助金额:
$ 62.47万 - 项目类别:
Standard Grant
Field-Theoretic Polymer Simulations: Free Energy and Multi-Scale Methods
场论聚合物模拟:自由能和多尺度方法
- 批准号:
0904499 - 财政年份:2009
- 资助金额:
$ 62.47万 - 项目类别:
Continuing Grant
Field-Theoretic Polymer Simulations: Fundamentals and Applications
场论聚合物模拟:基础知识和应用
- 批准号:
0603710 - 财政年份:2006
- 资助金额:
$ 62.47万 - 项目类别:
Continuing Grant